PARNIDS: A Scalable Network Intrusion Detection
Loadbalancer

ABSTRACT

Network intrusion detection systems (NIDS) are becoming
an ncreasingly tmportant security measure. With rapidly
increasing network speeds, the capacity of the NIDS sensor
can limit the ability of the system to detect intrusions. The
PARNIDS parallel NIDS architecture overcomes this limi-
tation by distributing network traffic load over an array of
sensor nodes. Based on a custom hardware load balancer and
cost-effective off-the-shelf sensors, the system employs novel
stateless load balancing heuristics to thwart scalability limi-
tations. It also uses dynamic feedback from the sensor nodes
to adapt to changes in network traffic. This paper describes
the overall system architecture, discusses some of the crit-
ical design decisions and presents experimental results that
demonstrate the performance advantage of this approach.

1. INTRODUCTION

With the continuing computerization of our society, network
intrusion detection systems have become one of the key tools
for a sytem to secure critical data. Complementing firewalls
and host-based security tools, network intrusion detection
systems (NIDS) are usually located at the interface between
internal and external networks, where they can observe and
analyze all information traveling between the two networks
to find potential security breaches. The overall efficiency
of the NIDS in detecting and signaling attacks depends not
only on the sophistication of the analysis algorithm but also
on the system’s capacity. To be effective, the NIDS plat-
form must be able to examine network packets at full wire
speed, since any significant packet loss can impact the attack
detection accuracy.

Network traffic speeds and volume are increasing at an expo-
nential rate. Historically, Ethernet bandwidth has increased
tenfold nearly every four years, outstripping the ability of
general-purpose computer systems to receive and process ev-
ery network packet. For instance, many existing hosts are
unable to effectively process traffic on a 100 Mbit per second
link [12]. Increasingly complex intrusion detection methods
only add further to the pressure on NIDS platforms.

The conventional approach of tuning the hardware and soft-
ware of the NIDS platform to maximize its performance can
yield considerable improvements, but falls short in support-
ing next-generation networks operating at gigabits per sec-
ond and faster. Custom hardware solutions, on the other

hand, are expensive and inflexible. Parallel or distributed
network intrusion detection platforms present a viable al-
ternative for high-speed network environments, as they dis-
tribute network traffic over an expandable set of sensor hosts.
Such systems combine the flexibility and cost-effectiveness
of off-the-shelf hardware and software with the performance
of custom designs. The key challenge for a parallel NIDS
platform is to distribute network traffic over several hosts
while avoiding overloading any of the sensors. At the same
time, the parallel NIDS platform must be robust against
malicious traffic patterns, and must not introduce any new
vulnerabilities to the overall detection platform due to the
distributed processing that would allow attackers to avoid
detection. Finally, the traffic distribution scheme should not
negatively impact the sensors’ ability to perform intrusion
analysis.

This paper first analyzes the requirements for a parallel net-
work intrusion detection platform, and then describes the
architecture of a novel, scalable, parallel NIDS platform con-
sisting of a custom hardware load balancer and off-the-shelf
sensor nodes. The PARNIDS load balancer employs mul-
tiple levels of hashing and incorporates feedback from the
sensor nodes to distribute network traffic over the sensors
without overloading any of them. The system is designed
to handle network traffic at 1 Gigabit per second and above
with minimal packet loss. Unlike previous connection-based
approaches [3][6], the hash-based load balancer does not im-
pose scalability limitations on the number of concurrent con-
nections or on the number of sensors. At the same time,
the system minimizes the impact of traffic distribution on
the accuracy of each sensor’s analysis mechanism by routing
packets belonging to the same connection to the same node
whenever possible.

To ensure operation at wire speed, the load balancer is im-
plemented as custom hardware rather than software. A Gi-
gabit Ethernet link can carry packets at a rate of one every
742 nanoseconds, leaving insufficient time for most software
load balancing implementations. On the other hand, mod-
ern field-programmable gate arrays [14] provide enough logic
and memory resources to implement sophisticated, pipelined
load balancing techniques even at wire speed. At the same
time, the ability to reconfigure these devices allows for an
incremental design and test methodology and reduces over-
all development risk. The NIDS sensor nodes, on the other
hand, are built from commodity hardware and software, thus
leveraging improvements in system performance and intru-



sion detection software techniques, and reducing overall sys-
tem cost. The overall approach strikes a balance between
flexibility in the actual NIDS algorithms and high perfor-
mance through a small amount of custom logic.

The remainder of this paper is organized as follows. Sec-
tion 2 details the requirements and describes the design of
a scalable NIDS load balancer with a particular emphasis
on dynamic overload avoidance and hot spot management.
Section 3 presents evaluation data from trace-based simu-
lations and discusses several design tradeoffs and optimiza-
tions. Section 4 discusses how the general design maps to a
prototype implementation. Finally, Section 5 contrasts this
approach with other work in high-speed network intrusion
detection and Section 6 outlines plans for future work.

2. PARALLEL NETWORK INTRUSION
DETECTION

2.1 Requirements

Network intrusion detection sensors operate by reading and
analyzing all network packets from the link under obser-
vation. Intrusion detection algorithms range from signature
based analysis [11] to stateful flow analysis [7] and statistical
anomaly detection. In all cases it is of critical importance to
minimize the number of dropped packets, since any packet
may contain valuable information about an attack and may
even contain the entire attack.

The primary goal of a NIDS load balancer is to distribute
network packets across a set of sensor hosts, thus reducing
the load on each sensor to a level that the sensor can handle
without dropping packets. However, network traffic charac-
teristics such as average packet size, inter-arrival times and
protocols vary over time, usually over the course of a day.
For instance, an ISP may experience mostly HTTP traffic
during the day, followed by large UDP packets used by file
sharing programs in the evenings. Furthermore, network
load characteristics may be intentionally manipulated by an
attacker to circumvent the NIDS. Consequently, the load
balancing approach must be able to quickly adapt to such
changes.

Note that, unlike load balancers in other environments such
as web servers, distributed systems or clusters, a NIDS load
balancer is not concerned with achieving the best possible
distribution of work across all nodes. Since the NIDS is not
in the active communication path, improving its through-
put beyond the offered network load does not result in any
performance improvements. It is sufficient to assure that no
sensor’s load exceeds its capacity.

On the other hand, the analysis performed by the NIDS soft-
ware running on the sensor hosts places some restrictions on
how network packets are distributed. Stateful, flow-based
analysis requires that at least one sensor observes the com-
plete set of packets in a flow. In the case of TCP, a flow
simply corresponds to a TCP connection, but even data-
gram protocols such as UDP often show connection-like be-
havior. For instance, each NFS client maintains a logical
connection to the server, even though the underlying proto-
col is based on datagrams and is inherently connection-less.
To facilitate the stateful analysis of such network flows, the

load balancer must strive to forward related packets to the
same sensor. As a result, while a simple round-robin distri-
bution of network packets would distribute processing load
evenly across the sensors, it is not a viable solution as it scat-
ters packets belonging to the same flow over many sensors.
A static assignment of flows to sensors, on the other hand,
does not take into account differences in packet or data rates
between different flows and can result in concentrations of
high-intensity flows overloading some sensor nodes.

Finally, the load balancer should not introduce any addi-
tional vulnerabilities to the NIDS. Existing single-stream
intrusion detection systems can be overloaded with a flood
of small packets, similar to a conventional denial-of-service
attack. During the overload period, the NIDS is less likely
to detect the actual attack. While a load balancer directly
addresses the capacity problem, it may introduce new vul-
nerabilities through the load balancing algorithm. For in-
stance, if the load balancer maintains a table of flows to
facilitate flow-based load distribution and analysis, attack-
ers can overflow the forwarding table and render the load
balancer ineffective. A good load balancing algorithm must
thus minimize or eliminate such vulnerabilities.

2.2 Scalable Load Balancing

The PARNIDS parallel network intrusion detection platform
uses a hash-based packet distribution scheme to address the
challenges of a high-speed distributed NIDS. Network pack-
ets belonging to the same flow or connection are uniquely
identified by the tuple consisting of source and destination
IP addresses and port numbers. To distribute packets over
a set of sensors, the load balancer hashes these fields into a
table, where each table entry or hash bucket is associated
with a specific sensor. This approach addresses several of
the challenges outlined above. It does not limit the maxi-
mum number of concurrent flows or connections, since the
hash table size is fixed and independent of the number of
flows. At the same time, the design is sufficiently flexible to
support varying numbers of sensors. Most importantly, net-
work packets belonging to the same flow always hash to the
same value and are thus always forwarded to the same node,
but without incurring the cost of keeping track of individual
flows.

2.3 Dynamic Feedback

While the basic hash-based packet distribution scheme com-
bines scalability and flexibility and does not interfere with
flow-based analysis, it is not able to dynamically adjust
to traffic changes. In fact, the hashing scheme assumes a
uniform distribution of the values in the header fields be-
ing hashed. In many installations, such uniformity is not
present. For instance, a university may receive more web
requests originating from the country it is located in, thus
skewing the source IP address range. To tolerate such non-
uniformities, the load balancer must be aware of the excess
load on any one sensor node and must be able to adjust the
distribution scheme accordingly.

Each network packet imposes a certain load on the sensor.
This cost not only depends on the fixed interrupt and sys-
tem call overhead, but also on the size of the packet and the
actual payload, making it difficult for the load balancer to
accurately determine sensor load based solely on the num-



ber of packets or bytes forwarded. Thus, sensors themselves
must observe their own input buffer utilization and issue
flow control messages to the load balancer when the buffer
reaches a certain threshold, so that the packet distribution
scheme can be modified before packets start being dropped.
Upon receipt of a flow control message, the load balancer
moves some of the hash table entries currently assigned to
that sensor to a different node. This approach, shown in
Figure 1, provides a simple and effective means of incorpo-
rating dynamic feedback into the basic hash-based load bal-
ancing scheme without violating the requirement of a state-
less design. However, an adjustment in response to a flow
control message disturbs the flow-based analysis as it effec-
tively breaks network flows as it moves them to different
sensors. In general, this disturbance is preferable to the loss
of packets that would occur if no adjustment was made.
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Figure 1: Dynamic Reassignment of Hash Buckets

With a given hash table size, the average number of buck-
ets assigned to any sensor is inversely proportional to the
number of sensors. For small numbers of sensors, it may be
necessary to move a significantly larger number of buckets to
achieve a load balancing effect. To avoid this problem, the
hash table size scales in powers of two, proportional to the
number of sensors. This solution keeps the average number
of buckets per sensor within a fixed range, and makes load
balancing decisions more predictable.

2.4 Hot Spots and Multi-level Hashing

While the dynamic assignment of hash buckets to sensors is
able to adjust to many types of changes in network traffic,
it is not immune to the load offered by a small number of
high-bandwidth flows. It is possible, particularly when con-
fronted with a sophisticated attacker, that a number of such
flows hash to the same table entry, and thus are forwarded
to the same sensor. In this case a simple reassignment of
hash buckets will not address the problem sufficiently, since
a single hash bucket may overload any sensor it is assigned
to.

Instead, the PARNIDS load balancer promotes such high-
intensity traffic to an additional level of hashing. Essentially,
rather than routing the packets to the sensor indicated by
the hash bucket, a secondary hash function is applied to
the packet to determine the target sensor, as shown in Fig-
ure 2. If properly selected, the secondary hash function then
distributes the packets evenly over all sensor nodes. This ap-
proach can be taken further with additional levels of hashing
to reduce the effects of a hot spots even more.

A detailed analysis of a number of traces captured on a Uni-
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Figure 2: Multiple Levels of Hashing

versity campus Internet connection shows that even simple
XOR-based hash functions can achieve a relatively even dis-
tribution across the hash buckets. Varying the way in which
individual bits are combined in the hash functions is an ef-
fective way to produce different hash functions. Adding the
two IP addresses or port numbers before hashing results in
additional variations.

Ultimately, the worst case scenario from the point of view
of a distributed NIDS like PARNIDS is an intense denial-
of-service attack against a single port on a single target 1P
from a single source IP and a single source port. In this
case no hashing function that uses only the connection ID
is able to distribute these packets over multiple sensors. As
a final measure against such high-intensity traffic, the load
balancer performs a round-robin distribution of individual
packets once all levels of hashing are deemed to be insuf-
ficient. However, given the heterogeneous and distributed
nature of the Internet, and the resulting sharing of band-
width, it is unlikely that a single attack flow can overload a
reasonably capable NIDS sensor.

The load balancer must periodically re-evaluate all promoted
buckets. If traffic characteristics have changed and a bucket
is no longer a hot spot, routing for this entry falls back to
the original destination. This avoids the scenario where all
buckets are eventually promoted, forcing a round-robin dis-
tribution scheme on all packets. To reduce the likelihood of
an attacker exploiting the load balancing algorithm to avoid
detection, buckets are re-evaluated after a random time-out
value of several seconds.

The main challenge in applying this multi-layered hashing
approach is twofold: how to determine when it is necessary
to promote a hash bucket to the next level of hashing, and
which hash bucket to promote. Ideally, if the load offered
by a single bucket exceeds the capacity of the target sensor,
the bucket needs to be promoted. However, accurately mea-
suring the processing load that packets exert is impractical
as it depends not only on the rate and size of packets but
also on the algorithmic complexity of the payload.

A realistic alternative is to compare the packet rate of in-
dividual buckets with the average packet rate of all buckets
currently associated with a sensor. Buckets that exceed a
specific relative threshold are subject to promotion instead
of reassignment.

Figure 3 demonstrates this heuristic approach. Both graphs
show a sorted histogram of bucket load for a given sensor.
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Figure 3: Chosing between Moving and Promotion
of Buckets

The dashed line corresponds to the average load. The his-
togram in subfigure a shows a histogram with only a small
variation of bucket loads. In this case, to address such a
sensor’s overloading problem, it is sufficient to move some
of the hash buckets to another, less utilized sensor. The
histogram in subfigure b exhibits a larger variation, sug-
gesting that the network traffic associated with those few
intense buckets may be primarily responsible for overload-
ing that sensor. In this scenario, the load balancer promotes
the top hash buckets to the next level of hashing to further
spread the network traffic among the sensors. Note that
this heuristic only approximates the ideal decision. First,
the load balancer estimates the packet load associated with
each hash bucket based on packet rates. Second, the de-
cision whether to move or promote does not consider the
shape of the histogram, but only compares the highest in-
tensity buckets with the average load. On the other hand,
this approach does not require the costly analysis of all hash
buckets, and does not rely on overly detailed feedback in-
formation from the sensors. In fact, a sensor does not need
to be aware of which hash buckets are currently assigned to
it. Finally, this heuristic reduces the required storage on the
load balancer, since only a small number of high-intensity
hash buckets need to be tracked for each sensor, rather than
the complete set.

Alternatively, sensors can guide the load balancer decision
based on the packet buffer utilization. A sensor with a highly
utilized packet buffer is more likely to drop packets and re-
quires a more drastic load balancing response in the form of
promoting buckets to the next hash level. In the case of a
more lightly utilized buffer, even though it exceeds the flow
control threshold, moving a number of buckets away from
the overloaded sensor may still be sufficient to address the
overload. Both schemes are quantitatively evaluated in the
following section.

3. EVALUATION
3.1 Simulation Environment

To evaluate the performance of the NIDS load balancer, and
to further refine the design and explore tradeoffs, a trace-
based simulator is being developed. Trace-based simulation
is the ideal tool for this purpose, as network traces can pro-
vide realistic workloads to the simulator without needing
the simulator to go through the overhead of fully simulating
traffic sources. This setup also closely corresponds to a real
implementation where a NIDS platform is offered a certain
traffic load without being able to influence it. The simula-

tor implements a detailed and functionally accurate model
of the load balancer operation, including the hash functions
and tables, responses to flow control messages and promo-
tion/demotion of hash buckets.

A configurable number of sensor nodes are modeled as fi-
nite packet buffers that drain packets at a rate based on
packet size. When the buffer utilization reaches a config-
urable threshold, a flow control message is issued to the load
balancer. The model used for this particular evaluation con-
sists of 12 simulated sensors, each with packet buffers of the
Linux default size of 64 kbytes. Flow control messages are
generated when the buffer reaches 30% utilization, equiva-
lent to 19660 bytes.

Note that the simulator does not model the actual intru-
sion detection software, as these details have no impact on
the load balancer and would merely provide more accurate
packet drain speeds. Instead, the main focus of the tool
is to characterize the load balancer behavior and to refine
design decisions such as suitable traffic intensity measures,
time-out values and hash table sizes.

Two different network traces, both captured on the cam-
pus Interet connection of a major University, are used for
the following evaluation. An older trace, representing a 45
MBIt per second link, contains 1,402,229,593 packets cap-
tured over a 21 hour period on December 1, 2002. The
second trace corresponds to a 200 MBit per second link and
contains 38,599,994 packets, covering approximately fourty
minutes of real traffic, captured on June 9, 2004.

3.2 Dynamic Feedback

One of the innovations of the PARNIDS loadbalancer is the
dynamic feedback from the sensors to handle potential over-
load situations. To demonstrate the need for such feedback,
Figure 4 shows the packet loss of individual sensors over time
for the faster trace. The top graph shows a static hash-based
traffic distribution scheme without dynamic feedback or ad-
justment. The bottom graph shows the same distribution
scheme, but with dynamic adjustment employing both the
moving and promotion of hash buckets.

Clearly, dynamic feedback is able to drastically reduce the
number of lost packets. Without feedback, a total of 498,995
packets is dropped, while feedback reduces the total to 46,208.
Note that these numbers correspond to relatively small drop
rates of 1.3 and 0.12 percent, respectively. However, the
NIDS loadbalancer must be designed for worst-case traffic
scenarios, in which the loadbalancer itself is under attack.
The traces used here do not contain such malicious traf-
fic, hence the packet drop rates are smaller. Nevertheless,
the effects are sufficiently strong to guide the design of the
loadbalancer.

The feedback-directed loadbalancer is able to completely
eliminate the packet loss spike encountered by sensor 8, as
well as most other spikes in the second half of the trace.
Only the initial spike incurred by sensor 6 remains, but it has
been moved to a different sensor node as a response to feed-
back. The remaining packet loss indicates, however, that
the scheme is not yet able to completely eliminate sensor
overload, for a number of reasons. During the time it takes
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Figure 4: Number of Packets Dropped per Sensor
over Time

to generate the flow control message and to adjust the hash
bucket distribution, additional packets are forwarded to the
sensor. If the remaining packet buffer is insufficient to hold
these packets, some packet loss will be incurred. Lowering
the flow control threshold provides more headroom to toler-
ate the response latency, but it can also increase the number
of flow control situations, thus disrupting more flows. Fur-
thermore, system parameters such as the number of hash
buckets that are moved or promoted for each flow control
message, as well as the rules guiding the decision whether
to move or promote, have a direct impact on the loadbal-
ancer performance. Some of the more important parameters
are evaluated in the following section.

3.3 Flow Control Response

Perhaps the most critical design decision for the scalable
loadbalancer is the heuristic used to determine which hash
buckets are either moved to another sensor node, or pro-
moted to the next level of hashing. While neither scheme
has a clear advantage over the other in terms of minimizing
packet loss, promotion is restricted by the number of hash
levels supported by the loadbalancer. On the other hand,
there is no limitation on how many buckets are moved, or
how often.

Figure 5 summarizes load balancer performance in terms of
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Figure 5: Normalized Packet Loss and Loadbalancer
Operations for Different Loadbalancing Heuristics

packet loss for both traces and for a number of different
heuristics. Packet loss is normalized to the always-move
performance to enable a comparison between the two traces.

The static always-move and always promote schemes com-
pletely avoid the decision between moving or promoting hash
buckets and simply apply only one of the two flow control re-
sponse mechanisms. Overall, these schemes do not perform
well compared to the other heuristics. The always-promote
heuristic achieves mimimal packet loss for the second trace,
but at the same time it is the worst-performing for the first
trace.

The intensity scheme, as described above, observes the num-
ber of packets forwarded through each hash bucket and
compares that traffic intensity to the average intensity for
all buckets currently assigned to a sensor. If a particular
bucket receives more than 20 times the average number of
packets, it is promoted to the next hash level. This scheme
attempts to estimate the load that each hash bucket exerts
on the sensor. If the packet load exceeds a significant frac-
tion of the sensors capability, it is promoted rather than
reassigned to another sensor. The Wintensity approach is a
variant of the previous scheme that measures packet rates
as a weighted average rather than a simple packet count
over a fixed-interval. Buffer refers to a heuristic that uses
sensor packet buffer utilization to decide between moving
and promoting. It encodes additional information about a
sensors packet buffer in the flow control message. Gener-
ally, a flow control message is generated if the packet buffer
is more than 30 percent full. If the buffer is more than
32.5 percent full, the sensor requests a promotion of the
most intense hash buckets, otherwise the buckets are reas-
signed to the least busy sensor. IBuffer is the inverse of
this scheme, it promotes buckets if the packet rate is below
32.5 percent, otherwise it moves them to another node. Fi-
nally, random probabilistically decides between moving and
promoting, with a 50 percent likelyhood for either decision.



Overall, the heuristics based on packet rates or buffer utiliza-
tion result in more predictable and consistent behavior and
achieve better packet loss rates. In fact, the performance
difference between these approaches is relatively minor, sug-
gesting that perhaps the detailed implementation has little
impact. Interestingly, the relatively simple random scheme
achieves comparable packet loss rates at a lower hardware
cost. In addition, this scheme introduces another degree
of randomness into the loadbalancer, thus making it more
difficult to predict and circumvent by an attacker.

To further evaluate the tradeoff between the various heuris-
tics, the bottom graph in Figure 5 reports the number of
hash buckets affected by a loadbalancer operation, either
through moving or promotion. This metric provides an in-
dication of how disruptive a loadbalancer adjustment is on
the stateful analysis of the affected NIDS sensor, since over-
all loadbalancer performance is a combination of packet loss
rates and the number of hash bucket adjustments. Again, re-
sults are normalized to the performance of the always-move
scheme.

The graph shows that the performance improvement of the
more sophisticated schemes comes at the expense of more
frequent adjustments to the hash buckets. Furthermore, the
inverted buffer-utilization scheme as well as the random-
ized scheme require a greater number of hash bucket ad-
justments to achieve packet loss rates comparable to the in-
tensity heuristic. Overall, the intensity-based approach pro-
vides the best combination of packet loss and loadbalancer
adjustments. The following sections investigate additional
parameters to tune the performance of this heuristic.

3.4 Response Intensity

A second critical parameter in the loadbalancer design is the
number of hash buckets involved in a flow control response.
Moving too few buckets does not reduce the sensor load suffi-
ciently to avoid packet loss. Although the overloaded sensor
can issue additional flow control messages, the packet buffer
may overflow by the time the loadbalancer has reacted. On
the other hand, moving too many hash buckets can overload
the new sensor to which these buckets are assigned. Hence,
moving the appropriate number of hash buckets is important
to minimize packet loss. Note that this aspect is somewhat
less critical when promoting hash buckets, since promoting
too many buckets does not negatively impact packet loss
rates.

Figure 6 shows the packet loss when moving or promoting
different numbers of hash buckets. Results are normalized
to the packet loss when adjusting 32 hash at a time. In ad-
dition, the number of hash buckets affected by loadbalanc-
ing operations is shown, again normalized. The packet loss
rate indicates that moving or promoting six hash buckets
for each flow control message minimizes packet loss. How-
ever, the total number of load balancer adjustments, and
thus the number of disrupted network flows, increases pro-
portionally to the number of buckets affected. To further
explore this tradeoff, Figure 7 shows the weighted sum of
packet loss and hash bucket adjustments. Two overall per-
formance measures are shown for each trace. The first met-
ric gives packet loss a weight of ten compared to a bucket
adjustment, while the second metric assigns a weight of 100
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Figure 6: Loadbalancer Performance when Moving
or Promoting Different Numbers of Hash Buckets

to a lost packet. The latter approach optimizes for packet
loss at the expense of increased loadbalancer activity. This
may for instance be desirable if the NIDS sensors employ
only basic stateful analysis, and reassigning a network flow
to a sensor has minimal impact on detection accuracy.
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Figure 7: Loadbalancer Performance Tradeoff when
Adjusting Different Numbers of Hash Buckets

The graph shows how the tradeoff changes as the signifi-
cance of packet loss changes. For a packet loss weight of
ten, adjusting only one or two hash buckets provides optimal
performance. On the other hand, when minimizing packet
loss is considered critical, adjusting more buckets further
improves performance. These results suggest that the over-
all loadbalancer performance is indeed a tradeoff between
packet loss and flow disruption. By adjusting the number
of hash buckets that is either moved or promoted, it is pos-
sible to trade one measure for the other and thus optimize
performance based on the needs of a particular installation.

A third design parameter of importance is the decision at
which traffic intensity to promote a hash bucket rather than
moving it. The intensity-based scheme compares the packet
rate of the most intense buckets with the average rate to
estimate whether a particular bucket overloads the sensor.
If the packet rate of a particular hash bucket exceeds the



threshold, it will be promoted to the next hash level, other-
wise it is moved. Raising this threshold further makes the
loadbalancer less aggressive in promoting and may increase
the number of packets dropped. Lowering the threshold re-
duces the risk of dropped packets, but may promote too
many buckets and thus may exhaust the available levels of
hashing more quickly.
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Figure 8: Loadbalancer Performance when Chang-
ing the Threshold to Promote Hash Buckets

Figure 8 reports the loadbalancer performance for varying
promotion thresholds, again normalized to the performance
using a 50-times threshold. Promotion threshold is given
as a factor applied to the average rate. For instance, a
threshold of 10x means that buckets are promoted if the
intensity is greater than ten times the average rate. Increas-
ing the threshold improves packet loss rates up to a point.
Extremely low threshold effectively implement the always-
promote heuristic, since almost all hash buckets will exceed
the threshold and will be promoted. As seen previously,
this approach results in unstable and extreme performance
and is not well suited as a loadbalancer heuristic. However,
raising the threshold further increases the packet loss since
high-intensity buckets are more likely to be moved rather
than promoted, thus only overloading the new sensor node.
Interestingly, the number of hash buckets affected by load-
balancing does not change significantly for all but the high-
est thresholds.

4. PROTOTYPE IMPLEMENTATION

4.1 Prototype Architecture

The scalable distributed NIDS architecture is currently be-
ing implemented as a fully-functional prototype system. This
effort ensures that the design decisions described in this pa-
per result in a truly scalable system capable of processing
packets at wire speed, and also facilitates extensive perfor-
mance characterizations under realistic network conditions.
The prototype system consists of a Xilinx Virtex-1I FPGA
hosted in the PCI slot of a Linux PC, a commodity switch
that implements the data plane of the load balancer, and a

collection of rack-mount systems as sensor nodes, as shown
in Figure 9.
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Figure 9: Prototype System Architecture

For each packet, the control logic determines the destination
sensor and rewrites the destination MAC address accord-
ingly. The external switch then forwards the packet to the
associated sensor. Splitting the actual load balancer into
the FPGA-based control logic and a data plane reduces the
number of network ports required on the FPGA board, and
also reduces the logic design effort. Sensor hosts are running
the open-source Snort network intrusion detection software
[11]. A custom kernel module implements a raw packet in-
terface that monitors its buffer utilization and issues flow
control messages as necessary. A second switch routes alert
messages from the sensors nodes to a database system for
further analysis and long-term storage.

4.2 Implementation

The load balancer control logic is implemented in a Xilinx
XC2V6000 FPGA and is hosted on a PCI board that also
provides two Gigabit Ethernet interfaces. The Virtex FPGA
integrates 65536 flip flops and associated 4-entry lookup ta-
bles, as well as 144 blocks of 18-kbit dual-ported SRAM.
The microarchitecture of the load balancer control is shown
in Figure 10.
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Figure 10: Load Balancer Microarchitecture

When receiving a packet, the load balancer first synchro-
nizes it to the clock of the outgoing PHY interface through
an asynchronous FIFO. It then latches and decodes the IP
header as well as portions of the layer-3 header, calculates
the hash indexes and performs the first lookup. Four hash



tables of 4096 entries each are implemented in the on-chip
SRAM blocks. Each entry contains a sensor number, a traf-
fic intensity measure and a bit indicating that a bucket is
elevated to the next level of hashing. If necessary, the rout-
ing logic performs further lookups in the additional hash
tables, before producing a sensor number.

While the routing decision is computed by the control state
machine, the original packet passes through a delay pipeline
from which it emerges at the same time the routing is com-
plete. At this point, the original destination MAC address is
replaced by the MAC address of the target sensor. Note that
the payload of the packet remains unaffected by the routing,
only the physical layer MAC address that is not used by the
NIDS software is modified. The outgoing network port then
recalculates the Ethernet checksum and transmits the packet
to the external switch. Flow control packets arrive on the
receive-port of the outgoing PHY interface. These frames
are also latched and decoded, and trigger the required ad-
justments in the routing stage.

The internal data path is 16 bits wide and runs at 62.5
MHz. A minimum-size network packet requires 32 cycles
to transmit, plus 4 cycles of preamble. Combined with a
6-cycle minimum inter-packet gap, the load balancer must
thus be able to handle a new packet every 42 cycles. Since
the system must sustain network traffic at wire speed to
be immune to denial-of-service attacks, no on-chip buffering
is implemented. Instead, all control logic is pipelined as
necessary to achieve the required packet rate.

In addition to the actual load balancing logic, the FPGA
also implements a detailed performance monitoring logic.
For each sensor, the performance monitor records the num-
ber of packets and the number of bytes forwarded, as well
as the number of flow control messages received. This data,
along with other summary statistics such as total packets
and number of elevated buckets, is made available via the
PCI interface. Monitoring software running on the host sys-
tem reads this data and presents it in graphical form, to aid
in detailed performance evaluation. Note that the host sys-
tem is only involved in configuring and monitoring the load
balancer, all network traffic flows only through the FPGA.

During startup, the load balancer issues a broadcast UDP
packet, requesting a notification message from each attached
sensor. Sensors signs on to the load balancer by providing
their MAC and TP addresses, which are stored in a table
that associates sensor numbers with MAC addresses and
vice versa.

At the time of this writing, all peripheral logic surround-
ing the actual routing logic is implemented and tested. The
board is correctly receiving and forwarding Ethernet frames.
Sensor nodes sign on with the board, and flow control pack-
ets are received and decoded. Ongoing work focuses on
identifying implementations of the basic routing algorithm
that are suitable for hardware implementation. For instance,
since the hash tables are implemented as SRAM arrays for
space-efficiency, they support only two accesses per cycle.
Checking timeout values in all table entries and periodically
clearing the intensity measures requires iterative logic that
competes with regular lookup operations.

5. RELATED WORK

Network intrusion detection is an active field of research,
constantly developing new approaches and techniques. The
PARNIDS project leverages these improvements by utilizing
off-the-shelf sensor hardware and software. The key contri-
bution of this work, the scalable load balancing approach,
provides a significant capacity improvement, independent of
and orthogonal to any improvements in the actual NIDS
sensor software or hardware. While the prototype system
is currently using Snort [13][11], other approaches such as
protocol analysis [8] benefit equally from the parallel system
organization.

Previous work in parallel network intrusion detection has
employed flow-based distribution strategies [3][6]. Similar to
conventional routers, these systems maintain tables of estab-
lished connections to route packets to the appropriate sensor
nodes. This approach supports flow-based intrusion analysis
at the sensors, but it makes the overall system vulnerable to
denial-of-service attacks. The PARNIDS architecture does
not exhibit this scalability limitation. In addition, existing
systems have not used dynamic feedback to improve system
robustness and adaptability.

The distribution of network traffic over clusters of nodes
is commonly used in network services such as web servers
[2][4]. Such load balancers often maintain per-flow state to
ensure that connections are not disrupted. This approach is
acceptable in these systems since it is possible to reject new
connection requests. A NIDS platform, on the other hand,
is not part of the actual network conversation and has no
means to throttle network traffic, and therefore must be able
to handle the maximum possible load.

Network intrusion detection performance has been measured
extensively, both in terms of capabilities [5][9] and capac-
ity [10][12]. The work presented here is motivated by the
realization that increasing network speeds make intrusion
detection systems vulnerable to overload scenarios. It di-
rectly addresses the capacity bottleneck, while also develop-
ing and refining methods to evaluate NIDS performance.

6. CONCLUSIONS AND FUTURE WORK

Network intrusion detection is one of several important se-
curity measures commonly employed to secure critical data.
With increasing network speeds, the capacity of the NIDS
platform is becoming a bottleneck that can compromise the
effectiveness of the entire system. Parallel NIDS platforms
are a viable solution to address this problem.

This paper discusses the unique requirements for a paral-
lel network intrusion detection platform, and then describes
a cost-effective yet scalable solution. A custom NIDS load
balancer distributes the processing load over an array of
sensor nodes to minimize packet loss. It employes a scalable
multi-level hashing technique to minimize NIDS vulnerabil-
ities and to adjust to changing network traffic characteris-
tics. The main contribution of this approach is the design
of a loadbalancing approach that does not maintain per-
connection state while still supporting stateful flow-based
intrusion detection. Furthermore, the PARNIDS loadbal-
ancer incorporates dynamic feedback from sensor nodes to
adjust to changes in network traffic and processing load,



thus further minimizing packet loss.

Evaluation results demonstrate the performance potential
of this approach. The best loadbalancing heuristic not only
depends on the packet loss rates but also on the number
of loadbalancing operations required to achieve this perfor-
mance, since each adjustment potentially disrupts network
flows from the sensors point of view. An equally important
consideration is the implementation complexity of different
heuristics. Under these considerations, a heuristic that es-
timates the processing load that hash buckets exert on the
sensor nodes outperforms all other schemes. Additional pa-
rameters for this approach also have a noticable impact on
overall performance, allowing the fine-tuning of packet loss
or loadbalancer activity to meet the needs of particular en-
vironments.

Future work includes the design and investigation of tech-
niques to make the load balancing heuristics less determinis-
tic and predictable, thus further reducing the vulnerability
of the NIDS platform to sophisticated evasion techniques.
For instance, the load balancer can randomly choose one of
several hash functions when promoting hash buckets to the
next level, or can vary the number of buckets being moved
or promoted when responding to flow control feedback.

Other avenues for future work include the development of
techniques to transfer flow information maintained by in-
dividual NIDS sensors in the event that the loadbalancer
moves a flow to another sensor. Furthermore, the corre-
lation of observed events will become more important and
parallel NIDS architectures must include light-weight com-
munication mechanisms to facilitate the exchange of such
information.
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