Feedback-based Dynamic Traffic Load Balancing for High Speed
Network Intrusion Detection

Kyle Wheeler

Lambert Schaelicke

August 14, 2003

Abstract

With hacking attempts and the importance of computer
security on the rise, Network Intrusion Detection Systems
(NIDS) are more valuable than ever. At the same time, in-
creasing network speeds and volume are making it more
and more difficult for commodity-hardware to support cur-
rent NIDS architectures with any accuracy. This paper de-
tails a load-balancing algorithm based on feedback, and
discusses its advantages over alternative approaches.

1 Introduction

Network traffic speeds and volume are increasing at an ex-
ponential rate. Simple ethernet networks have increased
in speed tenfold almost every four years for the past sev-
eral years, far outstripping the ability of network hosts to
keep track of every packet of information that goes by on
the network. At the same time, computer security is gain-
ing in importance, as computers become responsible for
more important things, and exploitation attempts are on
the rise. As such, network intrusion detection systems
(NIDS) have become more important for detecting such
attempts.

In general the speed is necessary to keep up with the
volume of large networks trying to communicate with each
other through a very few, large connections. However, at
such speeds commodity general-purpose computing hard-
ware is incapable of keeping up with every packet that
goes by on the network, [3] much less evaluate each packet
for possible malicious intent or keep track of streams of
data for the same purpose.

To solve this problem, a possible solution is distri-
bution of load. The network traffic can by divided into
sections that are each small and slow enough for a single
commodity computer to evaluate completely. The trick is
to distribute the network traffic in a way that is both useful
and allows stream-based analysis, but avoids overloading
any single machine and is fortified against malicious traf-
fic patterns.

Tap Sensor

Figure 1: Simple NIDS

Splitter

Tap Sensor

Figure 2: Distributed NIDS

2 TheGeneric Architecture

The basic network intrusion detection system (NIDS) set-
up is fairly simple—that is, a NIDS sensor is placed on
the network, as illustrated in Figure 1.

High speed links cannot be reliably examined at net-
work speed, and the easiest and most obvious solution is
to split the network traffic up into chunks that are small
enough that they can be examined in real-time, and then
passing those chunks (or slices) of the network traffic on
to an array of sensors that can examine the network slices.
Such a generic architecture is illustrated in Figure 2. This
is based off of the architecture presented in [2], but is more
generic.

The connection between the tap and splitter in this
case is a 1-to-m relationship, so many splitters may con-
ceivably listen to a single tap. The connection between the
splitter and sensor in this case is an n-to-m relationship, so
that there can be many splitters, and an unrelated number
of sensors (preferably more sensors than splitters). The
splitter and sensor blocks are merely conceptual blocks,
and may internally consist of many individual splitter or
sensor devices (respectively), organized in any fashion.

3 Splitters

There are two basic approaches to how to organize and
implement the Splitter section of the generic architecture.
One option is that the splitter can be part of the detection
framework, and the other is that the splitter can be generic
and independent of the detection framework™.

3.1 Detection Framework Splitting

Splitting the network traffic up in an intelligent manner
that is aware of the detection framework and the rules
within it can be a great way to limit the amount of traffic.
The primary complexity of the sensor is that it is exam-
ining the network traffic packet by packet and comparing
each one to a long list of rules in order to discover inter-
esting and significant packets. It is conceivable, therefore,
that a single, simple rule may allow a splitter to intelli-
gently divide and even weed out traffic to the sensors that
is known to be good. The rule implemented in the split-
ters, especially the first splitter(s), must be very simple,
so that they can be implemented easily in hardware, and
can be used to decide the destination of each packet at full
network speed.

For example, as illustrated in Figure 3, if the only traf-
fic that the sensors know how to analyze is http, ftp, and
smtp traffic, then it is easy for a splitter to simply send
all http packets one way, all ftp packets another way, all
smtp packets a third way, and drop everything else. What
this initial splitter sends the packets to could be sensors or
more splitters. Any subsequent splitters may be able to do
even more logical separation of the network traffic. The
more hierarchical logical separations occur, the less traf-
fic is going any one particular route, and the sensors that
do full analysis get a very small slice of the original net-
work traffic picked up by the tap. This allows each sensor
to be more specialized, being responsible for fewer rules
to evaluate each packet with, which improves the sensor’s
efficiency and capability to handle large amounts of traf-
fic.

There are, however, some drawbacks to this approach
to distributing the network traffic across an array of sen-
sors. One drawback is that the hierarchical layout is not
easily reconfigurable. If new attack vectors are discovered
and new rules for the sensors are written, the layout of the
splitters may need to be re-organized, which will likely
require that the whole NIDS be taken offline long enough
to reconfigure the splitter tree. Another problem with in-
cluding too much of the analysis system in the splitters is
that the tree is not detector agnostic, which is to say, the
splitter tree is tied to a particular network traffic analy-
sis software package, and more generally a particular net-

1Thismay make the splitter architecture useful for other kinds of load
balancing as well

Proxies

Splitter Sensor

HTTP
Splitter

Requests

Splitter Sensor

Responses
Splitter

L m
svtp |"
Tap — Splitter Splitter <

Sensor

Sensor

Sensor

Figure 3: Simple Detection Framework Splitter Tree

work traffic analysis schema. Thus, changing or adding
network traffic analysis software may require reconfigur-
ing the splitter tree, or may be completely impossible, de-
pending on how different the new software is from the old
software.

The primary drawback, however, of distributing traffic
in this manner is narrow denial of service attacks. This ar-
chitecture cannot easily detect and handle load variations,
and so cannot respond effectively to a sudden dramatic
increase of traffic that follows a specific path down the
splitter tree, in which case a single or a group of sensors
may be required to suddenly deal with the full network
bandwidth. In generalized traffic, this would likely not be
a problem, but traffic mixes may change (requring more
or less of the analysis logic to be offloaded into the split-
ter tree) and in any case this architecture leaves that attack
vector open.

3.2 Generic Splitting

The other method of splitting network traffic up is to split
it up according to much simpler and more arbitrary criteria—
perhaps simple contextual rules like IP address pairs or
TCP/UDP port numbers (this will be discussed in more
depth in a later section).

The primary benefit of this method is that load changes
can be easily handled by changing some simple configura-
tion settings. Load changes can be detected either by traf-
fic counting, or by listening for feedback from the sensor
systems. Because it can be easily turned into an adaptive
technique, additional load can also be handled by simply
adding more hardware at the detection system, without
keeping track of configuration settings.

4 Hashing

Simply splitting the network traffic up into chunks in an
unintelligent way is easy—simply splitting based on the
length of the packet, or a count of how many 1-bits or 0-
bits are in the packet. However, there may be some intel-
ligent requirements that must be placed upon the hashing
method.

4.1 Preliminary Network Chunking

The first requirement that may be placed upon the hash-
ing method is that it should preserve connections. Even if
you presume that the sensors will communicate to a cer-
tain extent, this is still an important requirement because
packet streams may be fragmented, and sending different
fragments to different sensors only serves to help the at-
tackers. Full connection tracking, however, is both com-
putationally and memory intensive, and opens a possible
avenue for an algorithmic attack. Thankfully, fine-grained
full connection tracking isn’t necessary to keep streams
intact, and a simple association based on a few key items
in the packet headers may be all that is needed.

The first and most obvious choice that comes to mind
is to base the hashing algorithm simply on the IP address,
and slice the target network into manageable pieces that
way. This, however, doesn’t give much information, and
means that a denial of service attack against one IP ad-
dress is also a denial of service attack against one section
of the sensor array. Adding TCP or UDP port numbers
to the hash (if applicable) is a useful additional way to
subdivide the traffic. Not all traffic is TCP or UDP, al-
though there is a limit to how much protocol knowledge
can be added to the splitter without losing speed. Some
suggestions (their usefulness depends on the speed of the
implementation) are ethernet frame type, IP pair (if it’s
an IP packet), port number (if it’s a TCP or UDP packet),
and packet type (if it’s an ICMP or IGMP packet). More
packet fields may be added as desired, but the goal is to
stay fast, and to stick to fields that cannot be simply twid-
dled by attackers to manipulate the hashing algorithm into
splitting connection streams.

4.2 Responseto Feedback

The hashing algorithm needs to produce more output val-
ues than there are sensors, preferably a power of two or
so higher than the number of sensors. These values can
be indexes into an array to translate them into sensor id’s
(hardware addresses or IP’s or an internal 1D number, de-
pending on how the rest of the splitter is implemented).
The value of this array is that it allows the values (which
represent chunks of the network that contain (probably)
several streams) to be reassigned to new sensors at run-
time.

When feedback packets are received from the sensors,
the array can be manipulated to redirect some (but not all)
packet streams away from the sensor(s) in question and
toward other sensors, which will hopefully alleviate the
problem without losing too much of the state information
inherent in receiving connection streams.

5 Hot Spots

The primary problem with all somewhat intelligent net-
work splitting methods is hot spots. Attackers can find
(even unintentionally) a specific path through the splitting
logic and send large amounts of network traffic through
it. At the same time, such paths are generally desireable
for analyzing traffic to detect attacks that are not denial of
service attacks, and thus logic that streams similar packets
should not be simply discarded. The problem of protect-
ing the system from narrow denial of service attacks (or
NDoS?) is two-fold. First, there must be a way to detect
that a path through the logic is being overloaded and sec-
ond, there must be some way to handle it.

5.1 Detecting Hot Spots

There are two obvious methods for detecting a hot spot in
the logic system of a load distributor. The first is packet
counting, and the second is feedback. Packet counting is
simple but inflexible and requires a homogenous set of
sensors, and feedback is very flexible, but is complicated
to implement.

5.1.1 Packet Counting

Packet counting is the simple method of keeping a count
of the number of packets that have travelled a certain path
in the logic system. In this implementation, adding a
counter to each entry of the big array the hash-map func-
tion uses is sufficient. Then some logic must be applied
to keep all the counters (making allowances for what hap-
pens when the counters roll-over) within a certain arbi-
trary delta of each other, thus balancing the traffic. When
one counter goes outside that delta on the high end, it can
be easily said that the hash value that delta is associated
with is a hot spot.

5.1.2 Packet Counting Problems

The problem with packet counting is its inflexibility. For
a generic, simple logic with packet counting to work, the
sensors it is making decisions about must all be able to
handle approximately identical amounts of packets. Even
with this allowance, however, packet counting has more

2NDoS are denia of service attacks that consist of packets that are
very similar or closely associated in the logic of detection systems

problems. It presumes that network traffic will split nicely
and evenly over the hash. While such a clean spread is the
sign of a good hash function and is probably a generally
favorable state, it is not absolutely required at all times.
Traffic may spread unevenly over the hash at certain times
and evenly over the hash at others. If the traffic never
gets to be too much for the sensors, this is not a problem
although it may be treated as such by a packet-counting
algorithm.

5.1.3 Feedback

Feedback is the more flexible and powerful method of the
two. It allows the sensor network to be heterogeneous,
and it allows for uneven hashing. The basic idea is that
each sensor machine has a method (for example, a modi-
fied BPF/LPF kernel module) for detecting when the ma-
chine’s load is high before it starts to drop packets. This
method must, then, be able to emit a notification packet
to the splitter informing it of this state. As a final require-
ment, the method for detecting the machine’s load must
be able to notify the splitter with enough lead-time for the
splitter to effectively redirect traffic to prevent the sen-
sor from dropping packets. This information is obviously
not as specific to the splitting implementation as packet
counts, and so exactly which of the logic paths that lead
to the sensor that is sending feedback may not be obvious
(perhaps this could be combined with a form of packet
counting to make a good guess which of the hash values
assigned to the sensor is the most busy).

5.2 Splitting Hot Spots

Once a hot spot has been detected, something must be
done to alleviate the situation and to somewhat rebalance
the load. Ideally, this can be done quickly and with a
minimum amount of disturbance to existing connection
streams.

When there is an indication that one of the sensors
is getting an excessive amount of traffic (either from feed-
back or from packet counts), some of that excessive traffic
should be routed away from the affected sensor to other
sensors. With packet counts which hash value (or logic
path) is producing the most traffic (and there may be more
than one) is readily apparent. If the system uses feedback,
the exact hash values that are the problem are not obvi-
ous, and there must be some way to pick one or more of
the hash values that are assigned to that sensor in order to
redirect them away to other machines.

A simple method for redirecting traffic is to randomly
or sequentially select one of the hash values assigned to
the sensor and direct it elsewhere, in the hopes that the re-
duction in traffic will help. Further load warnings (feed-
back) will simply cause the system to redirect more and

more hash values until the load warnings stop being gen-
erated.

This simple solution has the possible problem of “thrash-
ing,” where a single hash value is generating more traffic
than a single sensor can handle. Thus the machine it is as-
signed to will generate load warnings continuously, caus-
ing many of its assigned hash values to be reassigned,
until the high-traffic hash value is reassigned to another
machine—whereupon this new machine will start to gen-
erate load warnings until the problem hash value is again
reassigned. This problem is a narrow hot spot.

5.3 Narrow Hot Spots

Narrow hot spots present the same two problems that hot
spots generally present, as well as a third and new prob-
lem. Detecting them, and dealing with them are the same,
and coalescing when the hot spot cools. Because of the
nature of narrow hot spots detection cannot be done on a
per-sensor basis, and must be done with some sort of per-
hash traffic detection. Packet counts is a good place to
start, although some sort of age should be associated with
the packet counts to allow for hashes that have had large
amounts of traffic but do not currently. An easy method
may be to simply make the packet counts report only the
number of packets in the last second (have a timer zero out
all the counts). Further, more accurate methods for deter-
mining relative traffic on the hashes assigned to a single
sensor may be developed, although they are limited by the
need for speed.

Once a narrow hot spot has been identified, the next
question to answer is what to do about it. There are two
obvious possibilities, namely using a new hash and round-
robin distribution, which can work together rather well.

5.3.1 Hierarchical Hashes

One way to redistribute the traffic that is mapped to a cer-
tain hash value is simply to hash the packet again, with
a new hash value. For speed purposes, this likely means
that multiple hash values should be computed at the same
time, regardless of whether they will all be used. These
values should be generated by hashes that should be de-
signed to distribute packets in very different ways, in or-
der to avoid simply re-creating the narrow hot spot. How
many hash algorithms are used is implementation depen-
dent, although they add complexity and a little bit of time
to the processing of every packet.

Each layer of hashing must keep track of traffic the
same way as the first layer, and evaluation of feedback
load warnings must involve evaluation of all of the hash
values that are assigned to the sensor at all layers of hash-
ing (however, this should not be very difficult).

5.3.2 Round-Robin Distribution

It is possible that the narrow hot spot (in some form) will
remain, regardless of how many hashing algorithms it has
been through. In this case, there is no immediately ob-
vious, easy way to redistribute the flow without breaking
streams. That being the case, it is better to break streams
than to break the NIDS entirely, and so extremely narrow
hot spots should fall back to a round-robin distribution
scheme. Thankfully, this fall-back is completely and fully
evenly distributed, and thus does not have to be consid-
ered when feedback load complaints arrive.

5.3.3 Coalescing

The final issue to consider when dealing with narrow hot
spots is how to go back to the way things were before,
when the hot spot cools down. Multiple levels of hash are
all well and good, but unless, as hot spots go away, the ad-
ditional layers go away as well, eventually all traffic will
be filtered through all hashing layers and will eventually
be distributed in a round-robin fashion, which defeats the
entire purpose of having intelligent distribution in the first
place. Here lies perhaps the most inscrutable of the prob-
lems with intelligent load distribution. Perhaps packet
counts can again be useful, letting the system know when
traffic levels in one layer of hash or in the round-robin
distribution has dwindled sufficiently to return to the next
layer up. Or perhaps some sort of positive feedback from
the sensors woucl be useful for categorizing hash values
as being low-traffic. This area of research remains to be
explored.

6 Method

For testing and demonstration of this method of load bal-
ancing, | intend to use ssi m a network routing simulator
designed by Tom Slabaugh. By Fall Break, I intend to
have the simulator working and understood. By Christ-
mas Break, | intend to have the simulator routing using
a generic hash mechanism, without feedback. By Spring
Break, | intend to have the feedback mechanism in place,
with some simple coalescing handling. By the end of the
year, | intend to have done sufficient testing to have gath-
ered data to show that my method works, and by August
2004 | intend to have my Masters Thesis written and ready
to defend.

References
[1] Simon Edwards. WVulerabilities of Net-
work Intrusion Detection Systems: Re-

alizing and Overcoming the Risks.

[2]

[3]

http://www.toplayer.com/content/resource/white_papers.jsp,
requires registration, May 2002.

Christopher Kruegel, Fredrik Valeur, Giovanni Vigna,
and Richard A. Kemmerer. Stateful Intrusion Detec-
tion for High-Speed Networks. In Proceedings of the
IEEE Symposium on Research on Security and Pri-
vacy, Oakland, CA, May 2002. IEEE Press.

Branden Moore, Thomas Slabach, and Lambert
Schaelicke. Profiling Interrupt Handler Performance
through Kernel Instrumentation. In Proceedings of
the |EEE International Conference on Computer De-
sign: VLY in Computers& Processors, San Jose, CA,
October 2003. IEEE Press.

