
Memory Management in a Massively Parallel Shared-Memory Environment

A Proposal

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Ph.D.

by

Kyle B. Wheeler, B.S., M.S.C.S.E.

Douglas Thain, Director

Graduate Program in Computer Science and Engineering

Notre Dame, Indiana

April 2007



Memory Management in a Massively Parallel Shared-Memory Environment

Abstract

by

Kyle B. Wheeler

This paper discusses the implementation of a scalable runtime for massively

parallel computers based on processor-in-memory (PIM) technology. Of particular

importance for high-performance computing is the ability to scale the runtime

down to the minimum necessary overhead for a given computation. Because of

the PIM architecture, virtually every fundamental operation in such a system

can be described as a memory operation. This characteristic makes tasks such

as data layout, distribution, and relocation fundamental to the operation and

performance of applications. This paper proposes research into the effects of data

layout decisions that can be made at runtime either explicitly or as an adaptive

optimization, and how such a system may be able to recover from poor decisions.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Computers throughout history have been plagued by the same problem: the

need to function faster. This is a problem with as many facets as there are

researchers to study them, and changes with every new solution that is found,

however the standard approach is to find a bottleneck in the computer system

and remove it.

Modern supercomputers have largely taken the route of parallel computation

to achieve increased computational power [3, 4, 9, 18, 28, 38, 78]. In many modern

supercomputers, shared memory has been traded for distributed memory because

of the cost and complexity involved in scaling shared memory to the size systems

needed for supercomputing applications. This design is vulnerable to an obvious

bottleneck: the communication between parallel nodes.

Since the dawn of computing, the most persistent bottleneck in performance

has been latency: the processor is faster than the storage mechanism and must

wait for it to return data to be used in computation. Whether the disparity is high-

speed vacuum tubes waiting for high-density (low speed) drum memory, or high-

speed CPU’s waiting for high-density (low speed) DRAM, the problem is the same.

This is a fundamental vulnerability in the von Neumann computational model,

1



because of the separation of computation from storage and their dependence on

one another. Computation can only proceed at the pace of the slower of the two

halves of the computational model. The slower has historically been the memory,

so it is generally termed “memory latency” or the “memory wall”. This problem

negatively impacts large data-dependent computation particularly strongly [43,

67, 80].

There are only two fundamental approaches to addressing this problem of

memory latency: either avoid the problem or tolerate the problem. The “toler-

ation” approach focuses on the overall throughput of the system, and masks the

latency of requesting things from memory by performing unrelated useful work

while waiting for each memory operation to complete. An example of this idea is

the work in Simultaneous Multithreading (SMT) [45, 62] and out-of-order execu-

tion, both of which identify work that is sufficiently unrelated to be performed at

the same time. The fundamental characteristic of computation that allows this

approach to work is concurrency: the more unrelated work that needs to be ac-

complished, the greater the ability to do something else while memory operations

complete.

The other approach, “avoidance”, generally uses specialized hardware to pre-

vent latency effects. A common example of such specialized hardware is a memory

cache, which provides a small and very fast copy of the slower high-density mem-

ory. The fundamental characteristic of computation that allows caches to work

well is locality: the smaller the set of data that must be used at a time for compu-

tation, the more it can be stored in a small, fast cache. As caches are smaller than

main memory, and generally smaller than most data sets used in computation,

they do not solve the problem, but do avoid it to some degree.
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Von Neumann himself recognized the problem of latency and proposed the

cache-based avoidance technique in a quotation from 1946 [13] that is very com-

monly cited in computer architecture texts [25, 56]:

Ideally one would desire an indefinitely large memory capacity such

that any particular . . . [memory] word . . . would be immediately avail-

able. . . . It does not seem possible physically to achieve such a capacity.

We are therefore forced to recognize the possibility of constructing a

hierarchy of memories, each of which has greater capacity than the

preceding but which is less quickly accessible.

As predicted, this bottleneck has been a powerful consideration in computer

design and architectural research for the past six decades, with each new com-

puter architecture seeking to address the problem in one way or another. Despite

this effort, the problem has only gotten worse with time. Figure 1.1 depicts the

progress of the problem in simple terms, based on information from Intel’s proces-

sor line, starting in 1971 with the 4004 and continuing through the Pentium IV

in 2006.

One way of addressing this problem is to integrate processors with memory:

create a system composed of small processors attached directly to memory. This

idea has been examined by projects such as the EXECUBE [36] and its processor-

in-memory (PIM) successors [9, 10, 37, 48], IRAM [55], Raw [79], Smart Memo-

ries [42], Imagine [61], FlexRAM [33], Active Pages [53], DIVA [23], Mitsubishi’s

M32R/D [51], and NeoMagic’s MagicGraph [50] chips, to name a few. The major

attraction of integrating memory and processor is that it brings the data much

closer to where it will be used, and thus provides the opportunity for both in-

creasing bandwidth and decreasing latency.
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Figure 1.1. The von Neumann Bottleneck. [47]

It is conceivable to build a shared-memory parallel computer almost entirely

out of PIM units. Such a computer would have an extremely large number of par-

allel computational nodes, however each node would not be as fast or as complex

as a modern central processor. This unusual architecture would place unusual

demands on the software that runs on it and on the developers who write that

software, in large part because the standard issues of scheduling and data layout

are combined.

Typical operating systems in the supercomputing field are monolithic kernels

[34, 65, 68] because of the speed advantages typically found in monolithic design.

However, such kernels do not typically lend themselves to internal paralleliza-

tion or wide scale modularization. Along monolithic lines, each node in a large

scale PIM-based shared memory system could be treated as a separate system, in
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need of its own operating system or its own monolithic kernel. Such an approach

may appear similar to a standard distributed operating system, but because of

the shared address space is more closely related to the virtual-node approach in

some high-performance operating systems, such as FastOS [34, 68]. FastOS can

treat the multiple processing cores within shared-memory nodes—such as dual-

core Opterons—as distinct nodes in the larger system. However, logically sepa-

rating each PIM processor into an independent processing node does not exploit

the advantages offered by such a large, fast, shared memory system designed for

highly threaded applications [9, 10]. The benefit of a shared memory parallel sys-

tem is that memory operations can be done relatively quickly by any node in the

system.

A common design for parallel supercomputers is to divide the component nodes

of the computer into specialized groups, as such specialization can provide signif-

icant performance improvements [52]. This can be accomplished even in shared

memory machines, but because the address space is shared, the specialization can

happen at a more fine-grained level. For example, operating system operations

such as memory management for a cluster of nodes within the system can be

offloaded to a single node in that cluster [44]. Servicing system calls, or doing

garbage collection, or even the storage of the implementations of less-used OS

features could also be offloaded to specialized processors in such a tightly-coupled

parallel environment.

1.2 Problem

Caching is one of the most well-known and well-studied ways of addressing

the von Neumann bottleneck. As such, it has drastically affected the design
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of software and compilers by providing a simple metric for optimizing perfor-

mance: locality. Modern compiler technology is designed to produce code that

exploits commodity processor cache characteristics. Memory “hot spots” are cre-

ated intentionally so that frequently used data will fit within the small amount

of fast memory available. While this has proved extremely successful in simple

von Neumann single-processor designs, supporting coherent caches in parallel sys-

tems places a significant burden on memory bandwidth [19]. Worse, the more

nodes in the parallel system, the more expensive this cache coherency overhead

becomes. The result is that rather than sharing data implicitly and at a fine-

grained level, data is shared explicitly and large chunks of it at a time [22], so

as to avoid the shared cache overhead. This leads some supercomputer designers

to do away with processor cache entirely in large parallel computers [1], a design

decision which invalidates the wisdom of creating hot-spots. However, because

of the physical reality that in a large enough system not all memory addresses

may be accessed with equal speed, randomly distributing data across all mem-

ory banks [1] does not take advantage of what ranks of locality naturally exist in

hardware design. Additionally, this decision removes a major tool for addressing

the problem of the memory wall.

The PIM design concept attacks the von Neumann bottleneck directly; by

moving the processor closer to the memory—avoiding cache, bus, and memory-

controller overhead—the latency of accessing memory is decreased. The use of

many small processors rather than a single central processor also increases the

potential for parallel execution, which improves tolerance of memory latency as

well. Because each processor in a PIM-like system is attached directly to—and

can thus access more quickly—a specific subset of all of the memory in the system,
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it is most naturally described as a non-uniform memory access (NUMA) system.

In a NUMA system as potentially dynamic as a PIM-based shared memory

system, placement of data becomes not merely a crucial problem, but a prob-

lem for which the optimal answer may change over the course of a given set of

computations. More specifically, the problem is thus:

What layout is most beneficial to computation, what characteristics

should be used in analyzing a given layout, and is it beneficial to modify

that layout at runtime in an application-independent way?

1.3 Contribution

The area of data-layout is a well-researched area [6], beginning even before

memory hierarchies were first introduced in the early 1950’s [64]. At the time,

programmers needed to manage the memory hierarchies themselves, explicitly

copying data from drum to core memory and back. In 1962, Kilburn et al. [35]

proposed automatic management of core memory, which was first implemented

in the Atlas computer. Similarly, as a skilled parallel programmer may well be

able to plan data layout for large programs and manage it to provide optimal

performance on any size system, it is both more convenient and more portable to

do this automatically, both as is currently done at compile time and as this paper

proposes, at runtime. While runtime reorganization was proposed and demon-

strated by Ding et al. [17], the concept has not been applied to a parallel system.

In addition to convenience and portability, runtime reorganization also reduces

the amount of detailed knowledge of the system that a programmer must know

to exploit the memory distribution of any particular large parallel system. The

contribution of the proposed research will be first a metric for comparing layouts
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based on memory access traces, and second, a comparison of several fundamental

runtime layout modification techniques to gauge their utility and effect on several

representative large scientific codes.

1.4 Prior Work

Work in memory layout generally attempts to optimize for one of two things:

cache efficiency, or parallelism. Cache efficiency work typically relies on the reuse-

distance metric—the number of instructions between uses of a given piece of

data—to determine the success of the layout [75, 76], which biases data layout to-

ward the creation of hot-spots [16, 20]. By contrast, parallel layout optimization

[12, 15, 40] is based upon the idea that hot-spots prevent multiple nodes from

efficiently accessing data concurrently, and thus biases data layout away from the

creation of hot-spots. For example, Olivier Temam developed a compile-time tech-

nique for eliminating cache conflicts (hot-spots) through the use of data copying

[77].

In a NUMA-based cache-free shared memory parallel system, such as a PIM-

based system, both goals apply. Data needs to be kept local to a particular thread

because nearby memory is faster than more distant memory, and yet data must

also be kept far apart to be accessed quickly in parallel. Because these goals

are inherently opposed, and because different applications can take advantage of

different amounts of parallelism, they must be balanced in a way that is particular

to the task at hand. Byoungro So, et al. demonstrated the potential of customized

data layout algorithms for different applications [71]. Ding, et al. demonstrated

that runtime modifications to data layout can provide significant improvements

in application performance, particularly when the application’s memory behavior
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changes over time [17].

In shared memory systems, the cost of communication for remote memory

references is the single largest factor in application performance [29, 49, 57, 65,

69, 70]. Typical shared-memory operating systems are designed for systems of

between two and several hundred nodes, due to the difficulty of scaling to much

larger numbers of nodes; large-scale shared memory systems are considered those

with hundreds of nodes [30, 32]. Larger systems that behave like shared memory

systems are usually implemented as distributed memory systems that emulate real

shared memory with a virtual memory layer [21, 41]. Such emulation involves over-

head [24] that is avoided when the shared address space is implemented directly

in hardware, and only aggravates the communication bandwidth problem.

Layout techniques for NUMA shared-memory machines are a younger field

than general-purpose optimization. In 2001, Jie Tao et al. developed a method

for analyzing NUMA layouts in simulation [74] and found that applications that

are not tailored for the layout of the specific NUMA machine frequently face

severe performance penalties [73]. This expanded upon and confirmed work in

1995 by Chapin, et al. who analyzed UNIX performance on NUMA systems [14].

Abdelrahman, et al., among others, have developed compiler-based techniques

for arranging arrays in memory to improve performance on NUMA machines [2],

however the techniques are static and in addition to working only for arrays of data

or other language-supported data types, they also optimize for specific memory

layouts or a specific machine size.
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1.5 Approach

Operating in an environment that supports lightweight, mobile threads and

fast synchronization primitives in addition to shared memory opens many possi-

bilities in terms of what can be done at runtime. To learn what operations or

activities provide the greatest benefit, an analysis of the possible runtime layout

modifications must be performed.

The first requirement of a good analysis is a good set of information about

the way that large scientific codes tend to use memory. Rather than rely on small

kernels or simplistic models, better accuracy is obtained by using memory patterns

from large applications of the sort that would be used in a supercomputer setting.

Hardware that supports such features as lightweight threads and fast syn-

chronization primitives, such as PIM, does not exist in a sufficiently large scale

to study. In such situations, the most common approach is to simulate such a

system, and that is the approach proposed here.

1.6 Outline

This paper discusses the basic design and basic components of a scalable mul-

tithreaded runtime for a massively parallel PIM-based computer, and in particular

the options for memory management. Chapter 2 outlines the environment pro-

vided by a PIM-based system, and discusses some of the relevant challenges and

approaches involved in even the simplest of runtime systems. Chapter 3 consid-

ers the potential for data migration and the consequences it would have on the

architecture of the system, both in terms of overhead and opportunities and re-

quirements for hardware support. Chapter 4 discusses the utility of designing basic

system software to take advantage of the parallelism inherent in a PIM system,
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and demonstrates the point by comparing the scalability over several numbers of

processors of a standard memory allocation library with that of a parallel memory

allocation library in simulation. Chapter 5 details the proposed extension to that

preliminary work. Finally, Chapter 6 summarizes the thesis of this proposal.
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CHAPTER 2

JUSTIFICATION

2.1 Features of a Basic PIM System

A processor-in-memory (PIM) system is an unusual architecture that addresses

many of the performance bottlenecks in modern computers by grouping process-

ing units and memory units onto the same chip. These systems must provide

the necessary hardware support for the large-scale fine-grained parallelism that

is needed to take full advantage of the inherent parallel design of the PIM ar-

chitecture. While the details may vary between PIM implementations, there are

two features which are fundamentally necessary. These features are lightweight

threads and fast synchronization.

2.1.1 Lightweight Threads

The basic structure of a PIM unit is a simple lightweight processing core (or a

set of cores) with fast on-chip memory. The connection between the core and the

memory is short, fast, and wide.

That the core is lightweight means that it has a very simple pipeline; no re-

ordering, no branch prediction, or any of the other standard conveniences of mod-

ern heavyweight processors, particularly those that require substantial area on the

die. In such a lightweight core, data hazards and other sources of pipeline stalls
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must be avoided through the use of multiple threads, which must be lightweight

to expose sufficient parallelism. The core keeps a list of available, runnable, inde-

pendent threads and interleaves execution of their instructions.

2.1.2 Synchronization

In any sufficiently parallel system, synchronization primitives are significant

sources of delay and overhead. Though a system of very large numbers of nodes can

be efficient when performing computations that are partitioned so as to eliminate

data dependency between nodes, for most scientific applications this is unrealis-

tic; such systems need a way to manage data dependency. Data dependency in

shared memory computing is commonly managed through the use of locks and

atomic actions. The number of locks in use by a given system or the amount of

contention for the locks, is correlated to the number of nodes in the system, so

locking overhead increases with the size of the system. Execution time, therefore,

benefits greatly when locking is given consideration as a first-class memory op-

eration supported by the hardware. As such, PIM units must have lightweight

synchronization primitives built into the architecture, implemented as a standard

memory operation.

An example of a simple locking primitive is a semaphore, which could easily

be accomplished with either an atomic bit-flip, or the more standard test-and-

set. Such a semaphore bit could, for example, be attached to memory words as a

status bit that would make all operations on that memory word stall until the bit

is cleared.

One of the more interesting lightweight synchronization techniques that relies

on such a primitive is a fine-grained technique known as Full/Empty Bits (FEBs).
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In a system that uses FEBs, every segment of memory (possibly every word)

is associated with an extra semaphore bit, much in the way a clean/dirty bit is

associated with pages in a page table. Read and write commands are then added to

the architecture with semantics that respond to the state of that bit. For example,

when data is written to a chunk of memory that chunk can be designated as “full”

by setting the bit, and when data is read out the chunk can be designated “empty”

by clearing the bit. It is an easy extension, then, to have a read operation stall

if the chunk of memory it is directed to read is “empty” until some other thread

marks the chunk as “full”. Similarly, a write could stall when attempting to write

to a chunk of memory marked as “full”. Of course, it would be useful to have

memory operations that do not respect the FEBs, as well as ways of manipulating

the FEBs without modifying the associated chunk of data.

FEBs can be used to emulate other synchronization primitives, such as semaphores

or mutexes, but are particularly well-suited for constructing “FEB pipelines”, or

circular buffers used for communication between a producer and a consumer that

allow the either the consumer or the producer to transparently block until the

buffer is ready for their operation. There is, of course, a trade-off to be exam-

ined between the granularity of the locked regions and the silicon overhead of

implementation, but that is not the focus of this paper.

2.2 Functions of a Runtime

Operating systems, particularly in the supercomputing field, are viewed with

a kind of disdainful appreciation; they provide useful and attractive conveniences

to the programmer, but those conveniences come with a cost in terms of overhead.

The goal of a supercomputer is to provide the maximum possible computational
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power, and the conveniences of an operating system are often either too resource-

intensive or too unpredictable to be tolerated [8]. While this often makes running

without an operating system seem attractive, most systems do need some minimal

ability to manage software and recover from errors.

A runtime, however, need not be the heavyweight feature-rich environment

that is so often associated with the term “operating system”. Instead, like the

Parix system [39], it can be as simple as a set of libraries of common management

functions that allow software to coordinate operations with itself more easily.

In a massively multithreaded system, runtime assistance is more easily cast as a

combination of a set of simple threads performing useful functions and a collection

of standardized data structures for doing things like memory management and

message passing.

The purpose of a runtime in a supercomputer setting is similar to that of a

library: to answer certain basic questions and perform certain basic operations

so that they can be implemented reliably and can perform predictably, giving

application programmers more time to do more useful work. These basic questions

include:

• What is faster: data close together or spread apart?

• Is some memory local?

• How should memory (small fast chunks? large slow chunks?) be allocated

and/or distributed?

• How should threads be spawned and distributed?

• Can there be too many threads, and under what conditions?
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• Are there protection domains, and what are they?

• How do threads and processes communicate, particularly between protection

domains?

• Can threads avoid overwriting each other accidentally?

• What happens when a memory reference fails?

• What happens when a thread crashes?

• What happens when a thread exits?

• How does a node avoid and recover from overload?

• Can a process avoid and recover from deadlock easily?

• Can a blocking operation time out?

• Can threads be debugged?

• Can a mobile thread or memory object be referred to persistently?

This is not meant to be an exhaustive list, but merely to give an idea of the

utility in having standard answers to basic questions. Some of these questions

may have simple or even obvious answers, however having answers is still useful.

2.3 Challenges

In attempting to answer some of the important issues involved in providing

runtime support for applications, some obvious challenges must be addressed.
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2.3.1 Memory Management

When hardware is designed to do things like buffer communication, it gen-

erally is designed with a static block of dedicated memory used exclusively for

that task, such as on a network interface card or an L2 cache. This makes the

memory management easy, but introduces the concept of failure and memory-full

conditions that must be dealt with and preferably avoided. In a PIM-type sys-

tem, the communication hardware’s memory may not necessarily be separate from

main memory. There are a few ways of handling this: the hardware can “request”

memory from the memory management system when it needs more through the

use of an interrupt or exception, or the hardware can simply be assigned a range

of preallocated memory for such a purpose.

Preallocating memory is an easy and efficient method because it is similar to

using a static block of dedicated memory. It is tempting to think that such memory

need not be addressable by software, but such separation introduces unnecessary

overhead since any data in such memory must be copied to an addressable loca-

tion in order to be used. Additionally, as with any preallocated fixed-size buffer,

the size may be non-optimal for the given computational load or communication

pattern. A given computation may require a great deal of communication between

nodes—particularly if the communication pattern is irregular and may have large

spikes—which could overload a smaller buffer. Alternatively, a given computation

may require very little concurrent communication and a large preallocated buffer

may waste space that could instead be used for application data storage.

If the existing communication buffer is exhausted by the communication pat-

tern, the hardware has two alternatives: refuse further communication or increase

the size of the buffer. Refusing communication may have consequences beyond a
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few lost memory requests. Memory requests may be retried, though this increases

the communication overhead. If the communication buffer is used for outbound

communication as well as inbound, this may prevent communication from being

set up, which would require possible retries at multiple levels.

Dynamically allocating communication buffer memory may provide a solution

to the drawbacks of a statically allocated communication buffer, but requires

communication between the hardware and the application (or runtime) that is

managing memory—which may not be local. Such communication may happen in

many ways. For example, the hardware could understand the memory map format

used by the runtime and could use it to locate and reserve unused memory. Such

behavior requires a lot of hardware involvement in memory management and limits

the creativity and flexibility of future memory management designs. It may be

useful instead to have a special interrupt, hardware exception, or assigned thread

to run in order to reserve additional memory for the hardware’s communication

buffer. This interrupt can be equivalent to triggering the memory manager’s

standard memory allocation function, though in that case the memory returned

may not be contiguous with the already allocated hardware memory, which is

likely an important detail for the hardware.

2.3.2 Memory Layout and Protection

The way in which memory addresses are arranged, both in the physical sense

and in the logical sense, has significant consequences for memory management.

There are many ways that memory could be arranged. A useful memory layout for

a large shared address space system needs to provide two things: memory latency

must be predictable, and memory must be readily accessed/addressed from any
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node in the system.

2.3.2.1 Simple Direct Addressing

The simplest sort of memory map is to organize memory as a long array of

sequentially addressed words, such as portrayed in Figure 2.1.

!"#$ !"#$ !"#$ !"#$

%&'"()*$

%##+$''

,,,

-- .-- /-- 0--.11 /11 0111

Figure 2.1. Simple Memory Layout

Memory that is addressed in this way is convenient for many reasons. Memory

latency is quite predictable, because no address translation needs to be done and

thus the location and latency of a given address is predetermined. Memory is also

easily addressed from anywhere because no matter where in the system a memory

reference is made, a given address maps to the same spot in the system.

Such a simplistic map has several drawbacks. Some of the primary drawbacks

are the problems of persistent references and memory fragmentation. First, be-

cause all memory addresses always refer to the same location, memory references

to mobile objects (such as threads) quickly become stale. It becomes difficult
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to maintain a reference to a thread, or a thread’s thread-local memory, that has

migrated from node to node. It is possible for the program to maintain something

like a thread table that is updated whenever a thread decides to migrate to a new

processor, but this becomes a much larger undertaking in situations where com-

mon memory objects (data) can be migrated or if it is possible that objects can

be migrated without the program’s explicit command. In either case, a central

repository of pointer indirections becomes a bottleneck.

The problem of memory fragmentation is more severe, for several reasons.

Memory must be managed—marked as either in-use or available. If it is managed

in a centralized fashion, the memory map becomes a bottleneck for all memory

allocation in the entire system. If memory is managed in a distributed fashion,

the partial memory maps distributed throughout the system fragment memory,

and the precise location of each partial memory map defines the maximum size

of memory that may be allocated as a contiguous block by a program. Even

if such fragmentation is deemed acceptable, memory will be further fragmented

by application use, which further constrains the maximum contiguous memory

allocation possible at any given time. Virtual memory, in the sense of having

a TLB, addresses the fragmentation problem for a single node. However, this

merely transforms the fragmentation problem into a distributed data structures

problem, as each node needs a way to reliably transform a virtual address into a

real address. This is discussed further in Section 2.3.2.5.

2.3.2.2 Memory Partitioning

A modification to simple absolute memory addressing that is somewhat more

useful is to segment memory. An example of this approach is illustrated in Fig-
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ure 2.2.
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Figure 2.2. Memory Partitioning Example

Using a memory map like this, large data segments can be allocated easily.

Local memory is then used for things like thread frames, memory management,

and communication buffers. This memory map has most of the same problems

as the previous method, such as memory fragmentation and persistent object ad-

dresses, but now also has the problem of lack of flexibility. If the same system

is to be used for data-intensive applications where a great deal of data memory

is needed but very few of threads are used and also for parallelism-intensive ap-

plications where very little data memory is used but a great number of thread
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contexts are required, the system partition would have to be reconfigured before

every application to tailor it to the profile of the application to be run.

2.3.2.3 Local Memory Aliasing

Another option in terms of memory maps is a simple local map, as illustrated

in Figure 2.3. This is essentially a variant on base-relative addressing, where the

base is location-dependent, and is always the first absolute address of the node

the request is made from.
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Figure 2.3. Local Memory Map

This allows node-specific addresses to work regardless of which node the re-

quest is made on. For example, libraries for communication may be loaded in the

memory images of every node in the same location. This mapping conveniently

allows a limited form of invisible thread migration. If a node becomes overloaded,

it may be possible for a thread to be paused, for all of its thread-local memory

and context to be migrated to another processor, and then restarted, without re-
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quiring the thread to be modified or otherwise notified that it is now executing

on a different processor. All of the node-local “scratch” memory that the thread

may have allocated is precisely where it is expected to be.

This sort of memory aliasing is extremely cheap to implement quickly, while

still providing some limited ability for overloaded nodes to transparently recover

from overload. There is a significant restriction on this overload recovery method,

however, and that is that the node-local “scratch” memory addresses used by a

thread on one node must be unused on the node that it will be migrated to.

Rather than using a simple memory alias as just described, it may be preferable

to use a more full-featured virtual memory address translation table for local-only

memory. With such a system, transparent migration may be achieved by simply

creating appropriate virtual address table entries on the new node for the migrated

thread.

2.3.2.4 Thread-local Descriptor Tables

A common feature of desktop systems using Intel architectures is something

called Local Descriptor Tables [31]. Each thread in the system could have, as part

of its context, a pointer to an address map or “descriptor table.” This descriptor

table may be shared among several threads, or each thread may have its own.

The descriptor table may also contain a chaining pointer, such that a thread may

reference addresses mapped by its parent’s descriptor table while maintaining its

own independent address maps if necessary. This arrangement is very flexible, and

provides a mechanism for dealing with memory fragmentation and for providing

persistent addresses to mobile objects. The drawback of this method, however, is

speed. Global addresses defined in the first parent’s descriptor table may create
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a bottleneck if kept there. However, copying them from the parent’s descriptor

table into each child’s descriptor table creates a significant coherency problem

with associated overhead. Additionally, the maximum time for an address lookup

may be unbounded as the memory system tracks down each successive, chained

descriptor table.

2.3.2.5 Globally Persistent Addressing

To deal with memory fragmentation, and provide persistent object addresses, a

global address map may be used. Like a virtual addressing system, this global ad-

dress map maintains mappings between persistent virtual addresses and absolute

addresses. The absolute-addressed memory space may be broken into pages, each

of which can be allocated separately, and mapped by this persistent distributed

global address map.

With a persistent distributed global address map, several operations become

possible that were not before. Large ranges of memory may be easily allocated that

would not fit into the memory belonging to a single node. Memory fragmentation

would no longer restrict allocation size either, and the question of locating a thread

or other object in the system becomes merely a matter of knowing its persistent

address and having the global mapping updated whenever threads or memory

pages are migrated.

The precise details of such an address map is both critical to performance and

implementation specific, however it could be done with a distributed hash table

[72, 81]. Another, more simplistic method, may be to use a simple broadcast

query for all allocations and lookups, though this would dramatically increase the

communication bandwidth requirements.

24



Such a powerful address mapping allows both the application, the hardware,

and the runtime to move blocks of memory or threads for any reason, transpar-

ently. Such behavior could be done to cluster memory near a thread that accesses

it, or to move a thread closer to the memory it is accessing without losing any

links the memory or thread may have already established with other memory ob-

jects. A distributed memory map with persistent addresses may also be useful for

surviving situations where local memory on a given node is in short supply: less

frequently used memory blocks can be migrated to less congested nodes to free up

local memory without interrupting execution.

The primary drawback of a distributed arbitrary address map is speed: both

lookup and allocation times are likely to depend on the size of the overall system.

While this may scale reasonably in the sense that lookup times can be a logarithmic

function of the size of the system, this would still severely slow down memory

accesses. It may be quite possible to make local access of persistent addresses

much faster than remote accesses, but this is still much slower than using absolute

addresses or more simplistic aliasing and remapping techniques. Such overhead

may not need to affect all memory references. While it may be useful or even

required to have such a system for locating shared, globally accessible data reliably

in a massively parallel system, many threads are likely to want local “scratch”

memory for temporary calculations that does not need to be shared or globally

accessible.

2.3.2.6 Thread-specific Virtual Memory

Another interesting idea for memory allocation and remapping would be to

associate each application thread with a memory thread (or threads). Memory
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references to a set range of addresses could be handed to that thread’s associated

memory thread in order to be fulfilled rather than be fulfilled directly. This

provides for a great deal of flexibility: threads that need to share references to large

address blocks can share memory-threads or can share memory data structures,

while threads that don’t need to share references like that do not need to. One

might even be able to construct sets of shared memory mappings that can be

defined at runtime, in a manner similar to MPI “communicators”, particularly

since in many cases only the size and contiguousness of the memory blocks, but

not the exact addresses, must be maintained between application threads. This

technique could even be used to implement a globally shared address space.

The execution model could be further refined to farm out all memory opera-

tions to independent threads. In other words, each computational thread could

depend on several memory threads whose job is to make sure that the compu-

tational thread has the right data in the right registers (or thread-local scratch

space) when it is needed.

2.3.3 Exceptions

There are many forms of exceptions that may need to be handled in even

a minimal-feature-set system, including hardware faults, program faults, inter-

rupts, and system calls. There are, similarly, many ways that a programmer may

wish these exceptions to be handled, including being handled by another process-

defined thread, being reported to another thread via a queue, ignoring them, or

even forwarding them the parent runtime, among other options.

One common type of exception that the runtime often needs to be able to

handle is an interrupt, such as a timer interrupt or a communication interrupt.
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There are several ways that a runtime could handle such exceptions. A common

method in modern processors is an interrupt vector that specifies the address

of a string of instructions to execute in the event of each variety of exception.

This could also, in a PIM system, spawn a thread, however an interrupt vector is

impractical in a massively parallel system for several reasons.

It is inefficient to copy code to every node in the system for handling all

possible kinds of exceptions, most of which will never be executed. The ability to

keep only the exceptions that must be handled locally local is extremely useful.

Unfortunately, communication itself (and thus, the act of forwarding exceptions)

may be a source of exceptions, and such exceptions must either be ignored or

handled locally.

In many cases, using an interrupt vector to handle exceptions also presumes a

large amount of atomicity in the exception handling that can be very undesirable

in a massively multi-threaded environment. Many operating systems find it neces-

sary to ignore all new interrupts while any interrupt is being handled. Some, like

Linux, break interrupts into an uninterruptible top half and an interruptible bot-

tom half. In a massively multi-threaded environment, such policies would likely

lose too many exceptions to be practical.

A more efficient technique in a massively multi-threaded environment with

hardware-supported locks and threads may be to queue exceptions in a special

exception queue that is processed by an independent exception thread (or threads)

that handles each exception in turn. This technique for exception-handling would

have a very small footprint and conceptually allows a great deal of configurability

in exception-handling. For example, another queue may be used to allow processes

or threads that wish to be notified of specific types of exceptions within specific
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scopes to register to be spawned or notified when such an exception happens.

New kinds of exceptions may be defined at runtime. At the same time, handling

for unexpected or undefined exceptions may be forwarded to a central system

exception handler if and when they happen without adding significant complexity

to the exception thread or the hardware’s exception handling.

2.3.4 Multiwait

A single thread waiting for a memory address state, such as a read waiting

for the memory address to become full, is relatively easy. When the requested

memory address is marked as “empty”, for example, the address of the thread

that requested the address is written to the contents of the memory and a flag is

set to indicate that the empty memory contains a thread address. Then, when

another thread writes to that address such that it would be marked “full”, the

value is sent to the thread indicated in the memory address.

Once a second thread may be waiting for that same memory address, the

implementation becomes much more complex. There are many ways that have

been proposed for handling more than one thread attempting to access the same

locked (or “empty”) word in memory.

2.3.4.1 Polling Wait and Multiwait

The most trivial method of waiting for a memory state is to poll the mem-

ory location in question (i.e. a spinlock). This method does not suffer from the

problems inherent in interrupt-based locking and waiting (discussed later in this

section) because there is no need to keep track of what threads are waiting for

a given address. On the other hand, polling has the downside of overhead that
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increases with the length of time a thread is required to wait. The overhead asso-

ciated with a simple poll operation increases linearly, though this can be improved

by using more complex exponential back-off strategies. On systems with heavy-

weight threads which may need to do complicated process swapping, the overhead

of polling is relatively minuscule, though it may cause large numbers of process

swaps. In a system where threads are lightweight, process swapping takes very

little effort, and where more complex waits and locks are relatively simple (i.e.

supported by hardware), polling has a relatively high overhead and becomes a

practical alternative to interrupt-driven waiting only for extremely short expected

wait times. The exact length of time polling may be used before it becomes more

expensive than an interrupt-driven wait obviously depends on the implementation

of the poll and the overhead of context switching (if any).

2.3.4.2 Thread-based Multiwait

One technique for handling multiple waiting threads is to spawn a new thread

to multiplex the wait. In other words, when a thread requests a memory address

that is, for example, marked “empty”, if the address is also marked as already

having another thread waiting for it, a new thread is spawned that will replace

the original blocking thread. This new thread will block on the target memory

address twice, sequentially, once to write the value back to the current requesting

thread and again to write the value back to the original requesting thread (or to

replace the original requesting thread’s position as the only waiter). The origi-

nal thread’s address is replaced in the requested memory address by this newly

spawned thread’s address. The basic implementation of this concept, as demon-

strated in Figure 2.4, is relatively straightforward. The order of dereferencing,
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however, is important to the sanity of the process.

:$3#$+

;$<5'*$+

=>+$3#?.

:$3#$+

;$<5'*$+

=>+$3#?/

:$3#$+

;$<5'*$+

=>+$3#?9

@AB*CD?;$E)$'*$#?F$A"+C?%##+$''

@AB*CD?=>+58$?;$E)$'*$#?F$A"+C?%##+$''

@AB*CD?=G58$?;$E)$'*$#?F$A"+C?%##+$'' :$3#$+

;$!;$E)$'*?=>+$3#

;$<5'*$+?%

;$<5'*$+?H

;$<5'*$+?I

@
0
8$
B
*5
"
6
3(
?J
(3
<

I
"
6
*3
56
'?
%
#
#
+$
''
?H
5*

J
)
((
K@
A
B
*C
?H
5*

:$3#$+

;$<5'*$+?%

;$<5'*$+?H

;$<5'*$+?I

;$!;$!;$E)$'*?=>+$3#

Figure 2.4. Thread-based Multiwait Technique

There are many ways to accomplish this kind of multiplexing, including a

hardware implementation. Regardless of the implementation details, however,

it is critical that replacing the currently blocking thread be an atomic action.

Without direct hardware support, the easiest way for a processor to do this is

to, for a short period of time after the new wait thread is created, while it is

being installed, ensure that only one thread can access this memory (possibly by
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ensuring that only one thread can execute). When the wait-thread is created, add

the current thread’s address, as defined by the read call, to the thread’s contents.

Then, ensure that only one thread can access this memory. Once only the current

thread can access the memory, re-try the memory access in case the state changed

while the wait-thread was allocated. If the memory is still being blocked by

another thread, read out the address of that thread and store it in the wait-thread.

Finally, write the wait-thread’s address into the requested memory address and

re-enable universal thread access to the memory address. This sequence of events

safely minimizes the amount of time the hardware spends in a single-thread-only

state.

2.3.5 Queue-based Multiwait

The memory overhead of thread-based multiwait is significant and may be an

issue for large numbers of waiting threads. Additionally, there is an implicit FILO

ordering to memory requests using that technique which may cause some memory

requests to starve or may be otherwise undesirable. It may be desirable to have

priority in memory access, for example. A similar technique, using a queue, is

more powerful and may be more useful. In this case, when multiple threads are

waiting on the same memory address, they are added to a queue. Rather than

waiting directly on the memory address, the threads are actually waiting on an

shadow address in the queue that will be filled by a single wait thread. This

technique is demonstrated in Figure 2.5.

In this case, there is a speed trade-off on when to create the thread with the

queue: on the first access or on the second. In general, if there are expected

to be multiple requesters, it may be useful to set up the wait-queue with the
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Figure 2.5. Queue-based Multiwait Technique

first memory request. This is, however, not necessary until the second memory

request. Waiting for the second memory request, however, requires many of the

same machinations as the thread-queue multiwait technique.

Of course, because using a queue requires locks, there is the possibility that

locks within the queue may require safe multiwait. This circular dependency may

be handled in several ways. The basic method would be to combine queue-based

multiwait with another multiwait strategy: use queue-based multiwait for the

general case and another one that does not rely on safe queues for locks inside

a queue-based multiwait’s queue. Either thread-based multiwait or polling-based

multiwait can be safely implemented.
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2.3.6 Safe Deallocation and Reuse

It may be desirable for the runtime to clean up after a thread or process that

has been terminated, regardless of the reason. It may also be desirable for the

runtime to sanitize freed memory for reuse, such that it may guarantee that there

are no outstanding memory references to that freed memory. These two operations

are related. One step to cleaning up a thread or process would be to deallocate

any memory specific to the thread or process. It is, however, entirely possible that

such memory contains addresses that are tied up in unfinished memory operations;

in other words, the memory has “dependencies”. For example, another thread or

process elsewhere in the larger system may be blocked waiting for one of the freed

addresses to be unlocked or filled with data (using FEBs). As another example,

the memory may have previously belonged to a thread context structure and

parts of it may be awaiting the result of incomplete memory commands that were

issued by the thread. If there are such outstanding memory commands, unless

these commands can be prevented from affecting memory after they have been

issued (for example, with some sort of protection scheme or virtual addressing

scheme), the memory cannot be reused safely, as its contents may be corrupted

by the outstanding memory commands. How this is handled depends on exactly

what sort of dependencies affect the freed memory.

If some of the freed memory addresses are awaiting the result of memory com-

mands (like a load), there are two basic methods for handling the dependency: by

canceling the unfinished memory requests, or by simply waiting until the outstand-

ing memory requests finish. If, on the other hand, the freed memory addresses are

being waited on by other threads, there is really only one thing to do: return an

error, akin to a “communication failed” error, to the blocked threads. These two
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categories of memory dependency can be referred to as the “unfinished command”

category and the “remote waiter” category, respectively.

2.3.6.1 Detecting Dependencies

Dealing with memory dependencies requires, first and foremost, detecting that

such dependencies exist. To a large extent, this is implementation dependent. For

example, a convenient hardware implementation could add a bit flag to every

address indicating whether it was the subject of a memory dependency or not,

thus allowing memory to be safely deallocated in O(n) time, where n is the size of

the memory being deallocated. Without such a flag, the software would need to

record the same information in some other way, either through a special library or

by intercepting all loads, stores, and lock requests and recording them somewhere

that the memory allocation library can find them.

In some special cases, some assumptions may make this task easier. For ex-

ample, if the freed memory is known to have been a thread header, and if thread

headers can be protected from other threads placing arbitrary, possibly accidental,

locks on any address within the thread header, and assuming that the thread’s

code may not be modified at runtime, then the algorithm for releasing that mem-

ory can be made simpler. In such a case, only a very few specific locations in the

thread header may be dependent on outstanding memory requests, and whether

they depend on unfinished memory commands might be determined by examining

the state of the thread before it exited.

It is possible, of course, to simply ignore this problem and simply blame any

memory corruption on poor programming. As this is likely frequently desirable in

very high-performance code, it would be necessary to be able to turn such safety
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features off. Nevertheless, such precautions against unintentional memory cor-

ruption should at least be possible, preferably with as little overhead as possible.

Doing this by using an interface like the exception queue is unfeasible because

of the speed and frequency that monitored memory requests would have to be

enqueued in the exception thread’s queue. A hardware extension is the fastest

method.

Assuming that memory is labeled with the flags described in Section 2.3.4,

a simple rule may be used to detect memory dependencies. If loads and stores

use the “contains address” bit in the address header to indicate incomplete or

complete memory requests (without modifying the “Exceptional” flag), then most

simple memory dependencies may be detected by simply examining the “contains

address” flag. The exceptions to this are memory dependencies that must not set

the “contains address” flag such as block-if-full-write, which are relatively easy

special cases and if they are implemented as part of a library will simply reduce

to the other cases. Polling dependencies, however, may be impossible to detect.

2.3.6.2 Waiting

The simplest way to handle “unfinished command” dependencies is to wait

until they are finished before allowing the affected memory to be reused by the

system. Assuming that there is a simple way to do this, when memory is freed it

must be checked for unfinished memory commands. If this memory was originally

a thread header, the thread may be removed from the queue of active threads,

because it has exited, but until its memory is dependency-free, it must be period-

ically re-checked for unfinished memory commands.

It is relatively simple to establish a persistent “Death Thread” that has an
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associated safe queue of memory blocks. When memory is freed and determined

to contain unfinished memory commands, it can be added to the Death Thread’s

queue. The Death Thread then periodically (either continuously or based on

a sleep function) iterates through it’s queue rechecking each block of memory.

Once the memory commands any given block was waiting for have completed, the

Death Thread can dequeue the related memory and add it back to the pool of

free memory. This, of course, has the drawback that memory requests may, for

whatever reason, not complete in a reasonable time frame. In extreme cases, for

example in deadlock, this may cause memory starvation.

2.3.6.3 Canceling Memory Requests

A more powerful method for dealing with outstanding memory requests, that

can handle both kinds of memory dependencies, is to cancel them. This, of course,

depends somewhat on the exact mechanism that remote memory requests use for

waiting. If the hardware supports it, this can be a relatively simple matter.

If the memory dependency is a non-blocking unfinished command, cancellation

is probably excessive and may not be particularly useful: unless something is

significantly delaying inter-PIM messages, waiting is likely a better approach in

this case as long as non-blocking unfinished commands can be distinguished. If

the memory dependency is the result of a blocking memory command, in either

the “unfinished command” or “remote waiter” categories, it may be (and possibly

must be) canceled.

Memory requests can be divided into cancelable and uncancelable categories.

It is possible to—either with the compiler, an explicit library call for all memory

accesses, or with some method of intercepting memory requests—ensure that the
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only uncancelable memory requests are either local to the node or are performed

by a persistent thread (i.e. part of the runtime). A cancelable request, presuming

the hardware does not support cancelable memory operations natively, is a meta-

request composed of three uncancelable requests between parts of the runtime.

For example, if a thread makes a possibly blocking request for a remote memory

address, the request could be re-routed to a local memory “shadow” of the remote

address. A runtime thread could then communicate this request to the remote

node which would establish the memory request on the remote node. When the

action completes on the remote side, it would communicate the result back to

the local runtime thread which would in turn update the memory shadow which

would then be fed to the local thread as if it came from the remote node. If

the local thread exited before the remote request completed, the runtime could

send a cancellation message to the remote node. The remote node would de-

queue the request in the same way it enqueued the request, and the local runtime

would set the shadow memory address’s header bits to allow the local thread’s

memory request to complete quickly. The dependency structure of such a request

is illustrated in Figure 2.6.

A similar mechanism could be applied to all memory references regardless

of the location of the target, thereby allowing not only for blocked memory re-

quests to be cancelled, but also to debug memory dependencies if desired. This

mechanism, of course, would introduce a great deal of overhead into the system,

but would make memory references a great deal more robust and would prevent

unfinished memory commands from holding memory hostage.
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38



CHAPTER 3

MIGRATION

3.1 Reasons to Migrate

The easiest form of memory allocation is, of course, static allocation—memory

is given a location when it is allocated and that location does not change. While

this is simple and makes finding objects in memory relatively straightforward, it

limits the amount of adaptivity that can be employed. In commodity computers,

this behavior is worked around in many ways; caching systems move memory be-

tween RAM and CPU-specific caches and paging systems in the OS move memory

between RAM and disk storage. In both cases, while the address referring to a

particular object in memory does not change, the location that address refers to

changes rather frequently in response to how that piece of memory is used.

3.1.1 Congestion and Overload

The typical reason that memory objects in commodity processors are migrated

from one storage medium to another is in response to overload. When too much

has been stored in the CPU’s cache, some of it is evicted and sent to a less quickly

accessible place in the memory hierarchy (usually, the RAM) to make room for

more recently used memory objects. And when too much is being stored in RAM,

some of it is evicted and sent to a less quickly accessible place in the memory
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hierarchy (the disk) to make room for more recently used memory objects. While

a PIM-based system might not readily move storage to disk, it will most likely

still run into overload conditions. Indeed, a PIM must consider more overload

conditions than simply too many things to store in memory. In particular, the

overload may also be that there are too many threads on a single PIM—in other

words, the PIM is too congested. Even if the PIM is not technically overloaded,

performance may be improved by employing overload-recovery techniques to load-

balance threads to other PIM nodes.

3.1.2 Proximity to Computation

In classic NUMA systems, the placement of memory objects must account for

more than simply whether there is sufficient space to store things. The proximity

of that storage to the location where the stored data is being used must also be

taken into account. Similarly, in a PIM context, memory residing on a given PIM

node is most quickly accessible from that PIM. Requesting memory from other

nodes is significantly slower. Thus, a thread incurs a latency penalty when it

uses memory that is on a different PIM node than that on which the thread is

executing.

3.1.3 Predicted Costs

The situation of a thread using distant (“remote”) memory is one which is a

particularly important decision point for PIM computation. To reduce the latency

penalty, there are two possible options: either move the thread to be closer to the

memory, or move the memory to be closer to the thread.

A näıve way of looking at the problem is to simply compare the relative costs
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of transfer and the cost of ignoring the penalty. If the remote memory is small

and will only be used once, it is obviously easiest to leave it everything where

it is and simply pay the latency penalty. If the cost of transferring the remote

memory to the thread’s node, both in terms of bandwidth and in terms of time,

is greater than the cost of copying the thread to the remote memory’s node, then

the thread should be sent to the memory it wishes to use. If the reverse is true,

and copying the thread is more expensive, then the memory should be transferred

to the thread’s node. While these are logical decisions, the evaluation of the costs

is far more complex than the simple copy operation.

When transferring a block of memory from one place to another, it may be

necessary to prevent access to that memory by other threads while the transfer

takes place, in order to avoid memory corruption. Indeed, in addition to preventing

access, the calculation of the cost of transferring the memory should theoretically

include the cost the move will impose on other threads who also may be using that

memory. For example, if one PIM node has a hundred threads all using a local

block of memory and another thread on a distant PIM node also wishes to use

that block, the cost of transferring that block to the remote node includes forcing

all of the hundred threads already using the memory block to start making remote

memory operations.

There are additional costs to consider for transferring a thread from one place

to another as well. First, unless the hardware understands relocatable threads, any

outstanding memory operations must be resolved before a thread can be migrated,

just as when a thread exits (see Section 2.3.6). Secondly, the cost of transferring a

thread includes not only the cost of transferring the thread’s execution state, but

also references that it will make in the near-future. For example, if a thread makes
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a remote reference to one node and the next thousand memory references will be

to a different node, sending it to the first node is probably unwise. Unfortunately,

foreseeing future memory references is an intractable problem; the best solution

is to assume that future references will be similar to previous references. It is

worth noting that commodity CPU caches have the same problem and resort to

the same approximation.

The thread may also have a certain amount of state tied up in thread-local

“scratch” memory, which must be transferred along with the thread—using threads

without such thread-attached memory removes this potential cost.

3.2 Implementation Considerations

When controlling the layout of memory at runtime, there are two basic meth-

ods: to layout memory as it is allocated, and to alter the layout of memory as

the program progresses and the use of that memory changes. If sufficient controls

are exposed to the application programmer, layout at allocation time can be a

powerful mechanism, in part because it is so simple. With layout allocation, the

choice of location for the memory need only be made once, which means that it

has essentially the same overhead that näıve allocation does. However, the sin-

gle decision point is also a limitation; if the use pattern of that memory changes

over the course of the application’s execution, its location may become a liabil-

ity. Allocation-time layout can, at best, provide a good “average” location that

is good some of the time and not excessively bad the rest of the time.
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3.2.1 Addressing

In order to support runtime data relocation, or “migration”, the system as a

whole must provide portable addressing (also known as pointer indirection). The

most common form of this is virtual addressing. Because of the overhead involved

in providing global virtual addressing, virtual addresses are most commonly orga-

nized into pages: chunks of memory that are relocated as a whole. Thus, global

virtual addressing ensures that any page in memory may be migrated at any time

from anywhere in the system to anywhere else. While the ability to relocate

memory easily is good, the fact that global virtual addressing relies on aggregat-

ing memory into relocatable blocks can be a significant limitation and inefficiency.

When any memory in a page can be migrated, the entire page must be migrated.

An alternative to global virtual addressing is limited virtual addressing, where

memory can be specified as relocatable when it is allocated. This might be im-

plemented by reserving a particular address range for relocatable addresses. Ad-

dresses within this range can be requested with a special function call, and the

simplistic range-based relocation allows the memory controller to quickly decide

whether a given memory address is virtual or not. Limited virtual addressing

can thus permit memory to be relocatable on a much finer-grained level without

requiring the overhead that would be necessary to do global fine-grained virtual

addressing. Even so, the overhead—both in terms of bookkeeping data struc-

tures and lookup time—for fine-grained addressing is significantly higher than for

course-grained. The benefit, however, may be significant.

43



3.2.2 Speed

In addition to memory efficiency, one of the primary considerations in a re-

locatable data scheme is the speed of operation. The speed is a factor in three

places: allocation, deallocation, and use. The “use” category is at once the most

critical, as it is the common case, and the most complex, as it includes any al-

terations in access time due to data migration. When handling runtime access of

relocatable memory, are two possible states that the memory may be in: static,

and “in motion”. The static state is fairly self-explanatory: when the memory

is not being migrated, and the only overhead is the time it takes to look up the

address translation. The speed of this lookup depends primarily on the way in

which relocatable data is stored. If, for example, it is stored in a simple binary

tree, the lookup can take as little as O(log(n)) time where n is the number of relo-

catable memory blocks. If the memory blocks are instead stored in a distributed

hash table, the lookup may take as much as O(log(N)) time, where N is the num-

ber of nodes in the system. The “in motion” state is the obvious complement to

the static state: the memory is currently being copied somewhere. How this is

handled may depend on the amount of incoherency the system can tolerate, but

preventing (or simply stalling) modifications during migration is a simple tech-

nique for preventing memory corruption. Such a policy, though, introduces the

potential for significant delay while memory is migrated.

Allocation and deallocation speeds are, while not as critical, still extremely

important. A common optimization to ordinary high-speed code—particularly in

threaded code—is to implement memory pools, so as to avoid using malloc()

and free() and thereby avoid incurring the overhead they require. In general,

this makes sense, as the programmer can use much simpler memory tracking than
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is needed to support malloc()’s generality, and can implement using different

pools for each thread. In a system that uses passive runtime data relocation,

it is important for the system to know when a block of memory is not needed

anymore. Standard pooling techniques make unused memory indistinguishable

from used memory, and so can result in unnecessary memory traffic.
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CHAPTER 4

PRELIMINARY WORK

4.1 Demonstrating the Potential

A simple parallel memory allocation scheme was implemented on a PIM ar-

chitectural simulator and compared with a näıve memory allocation scheme, to

demonstrate both the problems with using an existing allocation scheme, and the

benefits of even a trivial customized scheme.

4.1.1 The Simulator

The PIM architectural simulator used is the Structural Simulation Toolkit

(SST), written and designed by Arun Rodriguez in cooperation with Sandia Na-

tional Laboratories. The simulator is capable of simulating and executing large

systems and large real-world programs in the form of PowerPC binaries, instruc-

tion trace files, and even MIPS binaries. The toolkit includes a set of standard

libraries, including libc, libgcc, and several others based on the MacOS X library

suite, so that executable binaries can be compiled for it using a standard and

unmodified compiler. It simulates a system with two gigabytes of memory.

The libraries included with SST have been modified to support the basic func-

tionality of the SST simulator. The pthreads library, for example, is a wrapper

around the low-level lightweight threads possible in the SST’s PIM architecture.
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The locks in the libc library also use Full/Empty Bits rather than the standard

test-and-set methods.

4.1.2 The Näıve Memory System

SST’s original set of libraries was pulled directly from MacOS X. As written,

they relied on many services provided by the operating system, such as Mach

system calls and a virtual memory system. Rather than create a virtual memory

system within SST, a small change to the library was made, replacing the system

calls that request virtual memory pages with a simple lock-protected sbrk()-like

function that maintains a very simple stack-like structure of memory. Because

SST only simulates a single program at a time, this allocation scheme is sufficient

to correctly execute even large codes and standard benchmarks.

Underneath this simplistic memory allocation technique, the memory map

modeled by SST is somewhat unusual. When simulating an all-PIM system in

SST, memory is associated with an array of homogeneous PIM chips. Each chip

has one or more processing cores. Memory is divided among the processing cores in

a round-robin fashion in blocks of 4,096 bytes (this number is configurable). This

memory is also divided among the PIM chips in blocks of 16,384 bytes. Because of

this memory layout it is impossible to allocate more than 4,096 contiguous bytes

on the same processing core.

4.1.3 Malloc Modification

The memory allocation subsystem (malloc()) in the SST’s libc was replaced

with a new one designed to more fully exploit the hardware’s parallelism. Instead

of a stack-like structure, memory is logically divided into contiguous segments
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associated with each processing core. For example, because SST simulates a sys-

tem with two gigabytes of memory, if there are four processing cores each core is

assigned by this new malloc a contiguous 512 megabyte segment of memory; if

there are eight processing cores, each core is assigned a 256 megabyte segment.

Within each segment, memory is allocated in logical “blocks” of 4,096 bytes. A

memory use map is reserved within each segment for storing the in-use state of each

logical block within the segment. Meta-information structures, each one block

big, are defined to make tracking and freeing memory easy. They are allocated

as-needed. The structure of an example segment is illustrated in Figure 4.1.
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This scheme for allocation of memory is simplistic and basic, but is very par-

allel. Every meta-information block has its own lock that must be obtained in

order to read or write meta information from that block. The bitmap for the seg-

ment is protected by the lock in the master block. This allows, first and foremost,

every processing core to allocate memory independently of the other processing

cores in the system. Allocations of memory within a single segment can achieve

some amount of parallelism as well, because each meta-information block can be

manipulated independently.

Memory allocations are divided into two categories: tiny allocations and big al-

locations. Tiny allocations are allocations of 510 bytes or less. These are assigned

slots within a tiny-alloc block. This arrangement makes tracking and freeing such

small allocations rather efficient. Big allocations are anything larger than 510

bytes. These allocations are tracked in the big allocation header blocks as tuples

consisting of a pointer to the beginning of the allocated memory and a counter of

how many blocks belong to that allocation. Thus, when a pointer is given to the

standard free() function, it can be quickly deallocated. If the pointer is aligned

to a block size, it is a big allocation, and otherwise it is a tiny allocation. Big

allocation pointers are looked up in the big allocation header blocks to discover

their size so that the appropriate number of blocks can be freed from the memory

segment’s block-use bitmap. Tiny allocation pointers are marked as free in the

tiny allocation block’s slot-use bitmap.

4.1.4 The Comparison

To demonstrate the power of designing parallel system components, such as

the memory allocation library, to improve the scalability of a system over a more
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simplistic approach, a small benchmark was created. This benchmark has a single

parent thread that uses the pthreads library to spawn 1,024 child threads, and

then waits for all of the child threads to exit. Each of these child threads calls

malloc to allocate first a small amount of memory (four bytes) and then a large

amount of memory (4097 bytes). Then each thread frees its memory.

As each thread is spawned, the pthreads library allocates local memory for

a pthread thread header and then allocates memory for the new thread’s stack.

The thread’s stack is allocated in memory that belongs to the processing core

the thread will be spawned on. When the thread exits, the thread’s stack is

deallocated. When the parent thread has finished spawning threads, the pthread

thread headers are cleared as each child thread is joined by the parent thread.

This benchmark was compiled and linked against both the original malloc

implementation and the new malloc implementation, and was simulated in SST

with varying numbers of processing elements. The execution time was determined

to be the number of cycles executed by the first processing core because that is

the core the parent thread executes on. The results are presented in Figure 4.2.

Because both implementations are so different (and because the original is

so simplistic), the absolute number of instructions is hard to compare. Instead,

the percentage performance improved for each number of processing cores versus

the two-core case is demonstrated. The difference is dramatic. Not only is the

parallel malloc more scalable, but it is also much more predictable. The näıeve

malloc is able to benefit somewhat from more processors, but gets overwhelmed by

16 processors, and contention for the single malloc lock reduces the performance

over the 8 processor system significantly. It is likely possible to improve the

performance and scalability of the parallel malloc even further through tuning
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Figure 4.2. Scalability of 1024 Threads Calling Malloc

of the pthreads library to take additional advantage of the memory available on

other cores by not allocating the pthread header locally, and by optimizing the

malloc library for the size of memory allocations used by the benchmark or by

breaking up the segment block-use bitmap and allowing different sections to be

locked by separate locks.

4.2 Preparing for Further Research

For a further and more concrete examination of the benefits and trade-offs

involved in large-scale multithreaded scalable runtime support for applications on

PIM architectures, examining the specific performance implications of memory
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management practices is both a powerful proof of concept and a useful tool for

development and customization of large applications for the architecture. Efficient

data layout is typically considered the responsibility of the programmer, and as

such one thing a parallel memory management scheme must do is provide the

programmer with the ability to layout data in a predictable and explicit way.

However, it is also the case that important multithreaded applications are difficult

to analyze, evaluate, and predict due to their complexity. Generic methods for

both analyzing an application’s memory behavior and predicting the effect of data

layout on execution time would be extremely useful.

To that end, a more detailed examination of the memory behavior of real

applications and the effect that the possible alterations in memory allocation and

mapping may have on the memory performance of those applications will need to

be performed.

4.2.1 Collecting Trace Data

The goal of collecting traces of the memory behavior of real applications is

twofold. First, the information can be used to map the dependencies between

explicitly parallel operations and thus get a better idea of the effect of host-based

changes upon the performance of parallel applications as well as the opportunities

for optimization through communication reordering. Second, as MPI operations

in a shared memory machine are essentially memory reads and writes, a trace com-

bining MPI operations and memory operations can be transformed into an access

dependency graph, which can be used for analyzing the performance ramifica-

tions of modifications to data layout and distribution schemes of large MPI-based

codes were they to be operated within a shared memory or PIM context. MPI is
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not, however, necessary. Tracking the memory access patterns of standard serial

applications may also be of use.

4.2.1.1 Reasonable Parallel Behavior

One of the key elements to collecting good trace data is choosing applica-

tions that will behave realistically. This is a special challenge when dealing with

architectures that don’t exist yet, such as PIM. Thankfully, there is an architec-

ture that provides similar parallelism tools, such as fast locks, full/empty bits,

and lightweight threads. The architecture, called the Multi-Threaded Architec-

ture (MTA) [1], has some large-scale software available for it. In particular, the

Multi-Threaded Graph Library (MTGL) [7] provides a good example of high-

performance code written for an architecture that provides these capabilities.

The platform-specific features of the MTA are primarily used through the

use of C-language pragmas that instruct a custom MTA compiler as to how to

parallelize the code. Because MTA applications are so dependent on the compiler,

porting such code to other architectures rather difficult. To assist in making the

MTGL portable to other architectures, a library was developed that provides the

MTA’s hardware features in a generic and platform-independent way. The library

is called the qthread library, and includes a set of features known as the futurelib

that simplifies the threading interface. An implementation of the library has been

developed for both the SST PIM simulator and regular SMP systems.

Surprisingly, the qthread library makes parallelizing standard code extremely

simple. As a demonstration of it’s capabilities, the HPCCG benchmark written

by Mike Heroux for Sandia National Labs was parallelized with the futurelib

interface to the qthread library. The HPCCG program is a simple conjugate
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gradient benchmarking code for a 3-D chimney domain, largely based on code in

the Trilinos [26] solver package. With simple modifications to the code structure,

the serial execution of HPCCG was transformed into multithreaded code. As

illustrated in Figure 4.3, the parallelization is able to scale extremely well. Those

performance numbers came from running the code on a 48-node SGI SMP.

Figure 4.3. HPCCG Benchmark on a 48-node SMP
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4.2.1.2 GDBFront

GDBFront is a pair of programs designed to track memory accesses in terms

of programmer-visible objects. Specifically, in units the size of variables and al-

located blocks. There has been previous work in analyzing memory use patterns

by address, evaluating its temporal locality and spacial locality [46]. This adds to

that previous work information about how the memory addresses are related in

programmer-visible chunks that could be rearranged in memory at either compile-

time or runtime to improve performance, but that must be rearranged as a block.

While addresses commonly represent merely a single byte of data, the data is

related by what it is used for. For example, a 4-byte integer represents 4 dif-

ferent memory locations (in byte-addressed systems) that, for speed, are usually

arranged sequentially in memory and used as a chunk. However, if the four bytes

are treated by the application as a character array or a bit field, each of the

four bytes may be accessed with different frequencies or in different patterns. An

analysis of memory access patterns that does not account for restrictions on the

relocation of memory may näıvely recommend rearranging the component bytes

of the 4-byte integer, or may waste resources tracking each byte independently.

A more interesting example would be matrix multiplication: in general, when

multiplying two matrices and placing the results into a third, the standard compiler-

defined memory layout is to group all memory from each two-dimensional array

together. Based on the stride length, however, it may be beneficial to performance

to interleave the elements of the arrays together. This tool records each variable’s

size and address, allowing for such analysis.

GDBFront analysis of a program is a two-step process. The first step is to use

the Gnu Debugger (GDB) to discover all of the programmer-visible information
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about the program’s runtime memory use, including names, sizes, and offsets.

This information is dumped to a file, which is read in by the second program in

the two-step process: refTrack. This program uses the Amber instruction tracing

program from Apple Computer [5] to collect an instruction trace of the program

being evaluated. Memory accesses can be extracted from the instruction trace and

the affected addresses are mapped back to a variable name and context, which

is then logged in a trace file. Dynamic allocations can also be determined at

runtime by monitoring the program counter and when it reaches the address of

the beginning of a malloc() or free() or related call, extract the arguments to

the function from the register state.

4.2.1.3 Trampi

The initial motivation for the development of trampi was to fill the gap in

MPI tracing libraries, which is that current MPI traces are very static. They

record MPI operations as merely operations that occur at a specific time relative

to the program invocation. This allows researchers some ability to determine

how altering the characteristics of the communication network would affect the

performance of the MPI communication, but does not allow for estimates of the

affect altering the characteristics of the hosts would have on the performance of

the traced application.

To improve this situation, trampi uses the Performance Application Program-

ming Interface (PAPI) library [11] to obtain information about the program’s

behavior between and within MPI calls. The information that can be collected is

limited by what PAPI can collect on the given hardware platform, but generally

it can collect things like the cycle count, cache miss rate, and instruction mix,
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among other things. This data is recorded for every processing block between

MPI calls, as well as for within each MPI call.

4.2.2 Performance Modelling

Once trace data has been collected, it can be used to examine the effects of

data layout on performance by examining each memory operation and determining

the amount of time each will take based on given memory layouts and given

policies for runtime data layout. Using a discrete-event simulator such as the SST

(Section 4.1.1), factors such as thread locality, bus contention, memory latency,

and even memory access dependency relationships can all be used to determine

the delay in memory access times and its effect on the memory access pattern,

which can then be used to extrapolate the effect of data layout on execution time.

A full-system simulation can also be used to more fully model the precise details

of execution, to give a much more accurate picture of the expected effect of data

layout on performance.

57



CHAPTER 5

PROPOSED WORK

5.1 The Question

When examining and attempting to predict memory behavior in a large-scale

multithreaded system, there are many questions to answer. A basic question

to answer is: how much of an effect does data layout have? Certainly it has

a significant one, but how significant? One way to answer this question is to

compare the performance of some benchmark software using näıeve layout to the

performance of the same software with an optimal layout, however this approach

immediately begs the question of the definition of optimal. Just as cache strategies

are compared by looking at their relative number of cache misses, a good metric for

comparing layouts is to compare the number of off-chip memory operations. The

perfect data layout would succeed in preventing all off-chip memory references and

is most likely impossible for all but toy programs. However, such a presumption

does give a useful (if unreasonable) base for comparison.

A question along the same lines that must be addressed is how much—if at

all—system-level interference can improve data layout, and thus performance.

Certainly the programmer can lay out data in convenient and fast ways, but can

the system library functions, such as malloc() and virtual addressing schemes,

conspire to provide significant performance improvement? If just those functions

58



in their standard form cannot provide significant performance gains, perhaps alter-

native methods or altered semantics can. For example, creative byte-level virtual

memory remapping can not only move and distribute stack and static memory

around the system, but may be able to distribute large allocated chunks of mem-

ory in a way that improves performance sufficient to justify the complexity. Per-

haps a companion, predictive pre-fetcher thread may be useful for ensuring that

data is where it needs to be. However, as no predictive pre-fetcher operating with-

out the programmer’s explicit instructions can be perfect, it is possible that the

bandwidth consumed by moving data unnecessarily will negate the benefit.

A possible feature of a large multi-threaded system is the ability to migrate

an execution thread from one place to another, to chase the data it needs to

operate upon. Deciding whether migrating the thread or migrating the data will

provide the best performance requires more analysis than simply asking whether

transferring the data or the thread state takes more bandwidth: the congestion of

the nodes, future accesses, thread communication, and topology all must be taken

into consideration, however the relative impact of these factors on general-case

performance is unknown.

Even presuming that data layout is statically defined at the beginning of the

program, one must still determine whether clustering a given set of data is a bet-

ter policy than distributing it, so that intelligent decisions about the static layout

can be made. Some indicator characteristic to guide programmer layout of given

data structures and kinds of memory is something that would be exceedingly use-

ful. The effect of changes to data layout are difficult to predict accurately due to

the complexity of the applications that are intended to run in such multithreaded

environments. Generic methods for both analyzing an application’s memory be-
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havior and predicting the effect of data layout on execution time are extremely

useful, even if not used for runtime layout modifications.

The proposed dissertation will provide an analysis of several data layout policy

options, to provide an idea not only of the benefits intelligent runtime support

could have, but also of the potential for performance improvement data layout

analysis offers in a PIM-style distributed system.

5.2 Instrumented Memory Operations

Memory operation traces will be collected from several significant codes to ex-

amine and compare their memory behavior. There are several extremely large

computationally-intensive parallel applications available from Sandia National

Laboratories that can be used for this purpose, such as LAMMPS [58, 59, 60],

Salsa [66], sPPM [54], CTH [27], and the MTGL. Additional traces will also be

collected from more common applications such as vim, ls, and gcc that will make

an interesting comparison to the larger scientific codes.

The applications were chosen for several reasons. As the goal is to predict

performance of applications in an extremely large-scale parallel environment, ap-

plications that have been designed to handle variable amounts of parallelism are

likely to be the type of applications that are made to run on such systems. Appli-

cations operating in a PIM-like environment are likely to need to be able to handle

arbitrarily large amounts of parallel execution. The architecture and behavior of a

program that is designed to take advantage of arbitrary levels of parallelism is more

likely to be representative of the behaviors of programs designed for a PIM-like

system. The chosen parallel programs—LAMMPS, Salsa, sPPM, and CTH—have

all been designed to take advantage of as much parallelism as is available. The
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MTGL is a multi-threaded graph library designed for the MTA architecture [1].

It uses a very large number of threads and is as such can also take advantage

of arbitrary amounts of parallelism. Because its parallelism is based in threads

rather than in MPI, it more closely represents the type of code that would likely

be run in a production-scale PIM system. The other three programs—vim, ls,

and gcc—were chosen for comparison purposes. The intent is to demonstrate the

differences in memory behavior, and how an adaptive runtime can improve the

performance of both. It is possible to extract a surprising amount of parallelism

from serial code [63], which makes even these programs potential candidates for

use on a PIM-like architecture.

The traces collected will include a temporal record of all memory operations—

loads, stores, allocations, and deallocations—organized by time, program counter,

and the affected relocatable data blocks in the application. Currently, the Trampi

(Section 4.2.1.3) library records MPI operations, the address and size of the buffers

and structures involved, and counts instructions, cycles, and cache misses in be-

tween each operation. In a shared memory system, it is likely that MPI com-

munication will more closely approximate passing around a pointer to a buffer

rather than actually copying the data (in benchmark applications like sPPM,

more than 14MB is transferred in most MPI operations). The GDBFront tool

currently records traces of the variables that are being operated upon by the

traced program. The data from these two tools can be combined, producing a

comprehensive record of the memory operations that the traced programs make

in a multithreaded context.

Information about the relocatable data blocks is necessary to model potential

data redistribution policies. The state that must be communicated in a thread-
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migration must be considered more than merely the registers of the thread, but

also it’s current and near-future working set of memory. With a comprehensive

record of memory operations, the “working set” of the program can be quanti-

tatively measured and used to estimate how much state the program currently

needs at each MPI operation, and what memory it will use before it does the next

operation.

The MPI use-pattern of scientific applications tends to be cyclic: communicate,

compute, communicate, compute. This is illustrated well by Figure 5.1, which was

obtained from the Trampi library while tracing a benchmark run of the LAMMPS

program running on eight nodes of a development cluster (RedSquall) similar to

the RedStorm supercomputer. The vertical red stripes consist of the raw IPC

measurements, which occur at MPI boundaries; in essence, each vertical stripe

indicates a burst of communication. At each communication burst, the working

set of each thread changes, allowing for the possibility that a thread may migrate

and take less state with it than would typically be necessary at other times during

execution.

The record of memory operations can then be used to determine the size of the

state that would needs to be transferred. With this information, a simulator could

track not only the effect of layout policy on data layout, but the effect of data

layout and redistribution policies on the memory access latencies experienced by

the application, including total latency time, average latency, and latency jitter.

In a PIM-style system (Section 2.1), everything involves memory access. As

such, data layout and distribution have a greater effect on performance than on

virtually any previously explored architecture. The proposed dissertation will

explore several facets of data layout and distribution to determine the behavior
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Figure 5.1. IPC and MPI from LAMMPS, collected on RedSquall using
eight nodes

exhibited by a PIM-like system in simulation. PIM-style systems are sufficiently

dynamic, and the intended type of program is sufficiently complex, that compile-

time data layout is unlikely to be optimal without significant effort on both the

compiler’s part and the programmer’s part. While a component of the proposed

research is to provide means of analyzing data layout to predict performance, part

of it is to determine good methods of making layout decisions at runtime.
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5.3 Simulation

There are three basic categories of data blocks in a program: global, scoped,

and allocated. Each of these may be treated by different policies or similar poli-

cies, and the benefits of each must be examined. For comparison, however, it is

necessary to establish a baseline, based on current standard and relatively sim-

ple allocation methods. The most basic policy that closely approximates existing

systems will use a näıve stack-based local-node-only data distribution scheme for

persistent stack variables, with no data duplication or distribution. Global vari-

ables will be loaded into memory at a standard location on the base node, much

like current single-system behavior, and will not be copied to other nodes. The

memory allocation scheme will be a simple sequential addressing scheme, similar

to standard BSD-style memory allocators. Additional policies will build off of this

base.

A similar policy that instead distributes the global variables among the nodes

may provide beneficial load-balancing, and so may reduce the average latency

at the expense of jitter. Global variables may instead be copied to all nodes,

requiring a coherency protocol between them. This policy will answer the question

of whether the overhead of coherency is less expensive than remote data accesses

when sharing global data. The same may be attempted for runtime-allocated

memory, however this may require assuming extremely large per-node memory

banks. If there is a benefit to maintaining copies of global data, this may also be

compared to maintaining copies of all application data on all nodes. While this

policy is unlikely to be feasible or desirable in a real system due to the extreme

memory requirements, it will provide an idea of the asymptotic performance were

the application programmer to treat more and more data as global.
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Another category of modification that may be made to the baseline policy is

to alter the memory allocation algorithm. As a basic improvement, modelling

a parallel allocation scheme that makes each node’s allocation independent of

the others must be examined (this may be compared to the results reported in

Section 4.1.4). It also may be beneficial to attempt to load-balance memory

allocation around the system, or to load-balance among neighboring lower-latency

nodes, and so these modifications will be examined as well.

The third category of modification that may be made to the baseline policy

concerns stack variables, or scoped variables. The most obvious behavior is to

treat all stack variables as private and exclusively local. However, once MPI

communication of the data stored in these variables is taken into account, it

may be more useful to treat some of them as globals that need to be copied

to multiple nodes. If the system is presumed to use thread-migration, where

the traced program may relocate, the question of what to do with these scoped

variables takes on greater importance: should they be copied, transferred, or left

in their original location? This question is somewhat entwined with the question

of when threads should migrate to a different node. In a real PIM system, it

would likely be possible to explicitly define migration behavior, but for simulation

purposes, a heuristic must be used instead. A simple behavior, for example, is to

have each thread migrate whenever it reads from or writes to a non-local memory

address. Migration, however, has a cost associated with it, both in terms of

bandwidth and latency. That cost depends on the amount of state that must

be transferred. Thus, it may sometimes be beneficial to migrate the thread, but

only if the cost of migration is lower than the cost of doing the remote memory

accesses in the access pattern, which of course depends on how much memory (i.e.
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scoped variables) must be migrated with the thread. An alternative would be to

distribute scoped variables among the nodes or among nearby nodes.

In essence, each of these policies must be examined. Along with the policies,

the effect of different thresholds, based on the amount of state that must be

transferred and the amount of data that needs to be accessed, defining when to

migrate a thread should be examined.

5.4 Schedule

The proposed thesis has three primary phases: trace collection, simulation,

and analysis.

Trace Collection The first task of the first phase is to integrate the two existing

memory-reference and MPI tracing tools, to collect what amounts to a threaded

trace of memory references and performance distances between them. This is

expected to take approximately three to four weeks. Once the tools have been

integrated, the sample applications must be built and run, and trace data must be

collected and collated. This process should take no more than an additional month

(many representative benchmark inputs take no more than an hour to complete).

Which benchmark inputs to use is generally straightforward, and good benchmark

input sets have already been collected.

Simulation The next phase of research will be to prepare the simulation environ-

ments. There are two simulation environments that will need to be prepared: a

basic memory latency modeler, and a more complete execution model. Both envi-

ronments will be based on the SST simulator (Section 4.1.1). The basic memory

latency modeler will be a simple discrete event simulator that takes the trace data
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as input, uses the SST memory model of a PIM-like system to gauge latencies,

and estimates both execution time and total memory latency for the input trace of

memory references. This is expected to take three to four months. Performing the

simulations in all the necessary combinations will likely take at most two months.

Then, two representative policies from the simple discrete event simulator (a sim-

ple policy and the best-performing complex layout policy) will be implemented

as part of the libc that comes with the SST simulator. This is expected to take

approximately two months. The SST will also need to be instrumented to record

memory latencies. This is expected to take two to three weeks. Once these im-

plementations are stable, two of the sampled applications will be compiled for the

SST simulator, and run several times with both memory allocation schemes to

confirm the results of the previous simulations, which should take an additional

week.

Analysis The second phase complete, the final analysis phase may begin. This

will include a paper-and-pencil analysis of one of the simpler programs (either

sPPM or ls), explaining the behavior observed while under the several policies.

This analysis should take approximately a month. Finally, writing the thesis may

begin. This is expected to take approximately six to nine months.

5.5 Hypothesis

The expected result of the proposed research is an indication that the opti-

mal data layout and distribution policy depends on the specific application. This

would indicate that while generic runtime layout decisions may offer some benefit

over all applications, significantly better performance is to be gained by specify-
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ing the layout in the application. The performance of global variable policies is

likely to vary depending on how actively used the global data is: if it is infre-

quently modified, the overhead of keeping multiple copies coherent will be greatly

reduced. Allocated memory performance is likely to show a significant benefit

from even simplistic layout heuristics, such as keeping small allocations local and

load-balancing large allocations between nearby nodes. For example, in sPPM,

buffers over 14MB in size are allocated for use in MPI only to be communicated

and deallocated, where the receiving side then allocates a similar sized buffer for

the receiving side to use. It would be more efficient to simply allocate the buffer

on the remote node, copy the data there, and then inform the remote process of

the location of this buffer. This expected improvement from heap allocation is

also likely to depend on the migration scheme in some applications. For example,

the MTGL uses much more easily migrated threads, as they are designed to have

very little associated state. The performance of scoped variable accesses is likely

to depend even more heavily on the migration policy, but is expected to show that

local placement of scoped variables is usually optimal, unless they are either used

for communication or are always used with a specific data set that does not move.

It is possible, however, that a single combination of these options provides

significant benefits over the näıve scheme for all of the applications tested and that

while customization may provide additional improvements, a single generic scheme

may provide surprisingly good performance relative to the optimal performance.

5.6 Significance

The performance benefits discovered by the proposed research will not only

demonstrate the utility of runtime services, but will also provide important infor-
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mation on the relative benefits of data layout for application performance. The

research will also provide tools for analysis of the memory behaviors of generic ap-

plications. This data can be used to estimate the performance benefits arbitrary

applications may experience in a PIM context. It may also be useful for defining

categories of memory behaviors which programs fall into, which would be of use

to application programmers and designers who attempt to tailor their application

to a PIM-like machine, even without runtime services to assist in data layout.

The exploration of the trade-off in copying memory with migrating threads

will also provide valuable information about the benefits of migrating threads.

In particular, it should demonstrate the effectiveness of partial-state migration.

The research will either demonstrate the feasibility of a migrating thread with a

partial stack and local state that is not register-bound, or will demonstrate that

the overhead of even a partial stack is too great for realistic migrating threads.

Either answer has significant implications for PIM-related research, particularly

for compiler work and other simulation work that currently makes assumptions

about the requirements of migrating threads or the overhead involved in migration.
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CHAPTER 6

CONCLUSION

This paper proposes an architecture for a scalable runtime for a massively

parallel computer based on embedded processor-in-memory technology. System

software can be designed in a lightweight, dynamically scalable way that both has

the capacity to provide advanced operating system features and can be trimmed

down to a minimum-overhead, minimum feature-set for maximum computational

power. The design of such system software is strongly dependent on the inherent

parallelism and overall architecture of the hardware, and this paper focuses on a

PIM-style architecture. The general features of such an architecture, as well as

the inherent challenges to traditional runtime and operating system designs, are

laid out in Chapter 2. An example of dynamically scalable lightweight operating

system component design, organized in layers, is described in Chapter X. The

utility of designing system software that is appropriate to the unique features of

the hardware is demonstrated by the example memory allocation library that is

tested in Chapter 4. This library is compared to a standard memory allocation

implementation, from the MacOS X libc, that does not account for the paral-

lelism or use the lightweight locking mechanisms provided by the hardware. The

comparison demonstrates dramatic improvements in the scalability of the memory

allocation when the structure of the allocation data structures is appropriate for

the hardware’s design. The basic proposal, detailed in Chapter 5, is to continue
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to explore the benefits of memory allocation as well as memory relocation in such

highly parallel, large-scale shared memory architectures. The layout of data, and

the possibilities for runtime rearranging of data, will be evaluated in the context

of a PIM-like system where data relocation must be balanced not only against the

cost of relocation, but also against the possibility of thread relocation. The pro-

posed dissertation will provide a means of evaluating possible data layout schemes,

and the opportunities for runtime policies to affect performance.
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