
Distributed Firewall Policy Validation

Kyle Wheeler

December 7, 2004

Abstract

With hacking attempts, the cost of security breaches,
and the importance of defensive computer security in
general all on the rise, strong firewalls are more rele-
vant than ever. At the same time, demands for soft-
ware diversity and increasingly complex network lay-
outs make evaluating adherence to a unified security
policy especially difficult. In this paper, I propose a
method of uniformly validating firewall security pol-
icy in a heterogeneous network with a complex lay-
out, using a hierarchical probing and test manage-
ment system with very few host requirements and
a simple security-policy language for easily mapping
policy to evaluations for validation purposes. Pre-
liminary tests indicate that such a system works well
across a diverse network, even across the general In-
ternet.

1 Introduction

The number of attacks on network-connected hosts
has increased over the last several years, making the
security of networks an increasingly important prob-
lem. One of the most common ways that networks
are hardened against attack is to tightly control what
kind of network traffic can enter and exit the network
using a firewall. A firewall implements policy deci-
sions at a categorical low-level, explicitly denying,
allowing, or restricting broad categories of network
packets, the underlying structure of network commu-
nication. As firewalls become more capable, to han-
dle more complex policy decisions and to allow more
flexibility in policy possibilities, the exact implemen-
tation of those policy decisions in a firewall becomes
more complicated. As complexity increases, the pos-
sibility and probability of errors in implementation
also increases.

The goal of this project is to create an easy way
to test the implementation of policy, by testing the
firewall rules. The object is to determine, in a fast,
easy-to-use, and distributed fashion how the existing
firewall (or firewalls) behave, and to compare that to

policy. The target audience is a system administra-
tor or Chief Security Officer (CSO) that wishes to
verify that the policy that was mandated by their
organization has been correctly implemented. Alter-
natively, the system could be used to determine what
the existing policy appears to be, so that it can be
used as a starting point for developing new policy.
A general assumption of this system is that admin-
istrator of the firewalls within the network are not
adversaries, and are not actively trying to hide faults
from the primary administrator.

The general architecture of the system is as fol-
lows. The basic building block of the system is the
“Prober” program, which sets itself up on a host, and
can be directed to listen for and/or send packets from
certain ports to other ports to or from any other host.
These Probers can then be used by a coordinating
“Manager” program to determine whether or not any
firewalls are affecting (restricting) traffic in between
the Probers. The Managers are directed and con-
trolled by a central “Wizard” program. The Wizard
program commands the Managers to perform con-
nection attempts (network tests) in order to verify
the policy rules laid out for the Wizard in the policy
file by the administrator. Deviations from policy are
reported, as is inability to test parts of the policy.

The difficulty is several-fold. First, Probers must
be coordinated across many systems, even between
disconnected subnets, to accurately determine how
any firewalls in between them may be affecting the
packet transmission between any of the probes. Sec-
ond, Managers must be capable of collecting the
data in a secure way using a minimum of network
resources and guarantees. Third, the connectivity
data must be somehow related to a unified policy
declaration. Fourth, the policy declaration needs to
be translatable into a human-readable form which
can be meaningfully compared to an existing human-
readable policy declaration, without needing to en-
code the complete network topology in the policy.

1



2 Related Work

As security itself becomes more and more impor-
tant, it becomes more and more valuable for the
level of security that can be provided to be quan-
tified, so that businesses can directly match perfor-
mance to investment [8]. Testing and validating fire-
walls has, of course, been a goal for quite some time
[2, 14]. Security testing methodology in general can
be useful for comparing techniques. Some of the ma-
jor approaches to securing a system include threat-
modeling, static vulnerability analysis, and regres-
sion testing.

The threat-modeling approach [15] takes a sys-
tem and models it in terms of how it could and
would be attacked; what are the entry points for
an attacker, which parts of the system are vulner-
able first, and what “surface” or interface does an
attacker have to the system in which to find weak-
nesses. The threat-modeling approach may be use-
ful when dealing with firewalls, but it is an approach
that requires far more time and detailed knowledge
of the network topology and the machines that are
on the network than this project, which may make
it unmanageable for all but the smallest systems.

The static vulnerability analysis approach, epit-
omized by projects such as splint [6], are essentially
ways of validating that the implementation of a sys-
tem does what you think it does—essentially, its goal
is to avoid logical ambiguity and common loopholes.
This approach is like threat-modeling in that it re-
quires a detailed knowledge of the implementation
details (and is thus very implementation specific) of
all of the system’s components, but is different in
that it does not address how the systems interact.
It would be possible, for example, to use a static
vulnerability analysis program to analyze the policy
description of a large network—it would be able to
point out contradictions, incomplete coverage, and
other errors, but would not be able to analyze multi-
ple firewall rule-sets implemented in multiple disjoint
languages (if the firewalls even use a descriptive lan-
guage) and compare them to a policy document.

The regression testing approach seems to make
the most sense in a multi-platform, implementation-
independent sense because it allows one to treat the
system as a black box, verifying it’s input and out-
put [7, 11, 1, 4], which is precisely what is desired in
this situation. Existing projects that go about per-
forming such tests, however, use simple approaches
fit only for testing a single firewall, and which require
root-access to the testing host in order to determine
any useful information (by creating custom packets
of various sorts and feeding them to the firewall be-

ing tested to see what happens). This design makes
sense, as the original (and still very popular) design
of a firewall was based around the concept of a sin-
gle network entity that is connected to two (or more)
networks and regulates traffic between hosts on those
networks [14]. For generality, however, one may not
know where firewalls are in a system, and in general
security policies are often created that are indepen-
dent of the particular implementation and network
topology. In such a case, it is more desirable to con-
sider the entire network as a black box; one that
does not have as well-defined a network boundary as
a single firewall would provide.

Recent research has finally begun to further ex-
plore the design space of firewalls. For example, fire-
walls can be designed, rather than wrapped around
a single system “wall”, as the sum of the firewalls
placed on all individual hosts in a network [9]. Thus,
far more complicated and in-depth security policies
can be implemented, allowing for security decisions
at multiple points rather than a single ingress/egress
check at a network boundary. This makes it possi-
ble to regulate even communication on a fully con-
nected network without forcing all internal commu-
nication through a single firewall bottleneck. Such
new approaches to firewalls can allow for central-
ized policy implementation, making maintenance of
a unified security policy for the entire network much
easier, however it exposes the overall network to new
methods of attack which are inherent to any central-
ized command system. That is, when the central
firewall command center is compromised, due to at-
tack or mistake by the administrator, the security of
the entire network is compromised, unlike a situa-
tion where each firewall has a unique administrator
and cannot be turned off en-masse. Also, as in any
centralized command system, the commands can be
attacked and spoofed, possibly allowing an attacker
to subvert the firewall by interrupting or corrupt-
ing the command-chain. Additionally, a distributed
firewall system is a layer of complexity on top of the
primary defenses of the network, and requires all fire-
walls to be using the same system—making a single
flaw in the implementation far more serious than a
more diverse system. Nevertheless, the distributed
firewall is an attractive option in terms of responsi-
bility and from an ease-of-maintenance perspective,
as it allows a single administrator to compare a sin-
gle control interface with the official security policy
to verify that it correctly implements the policy.

In accordance with the increased attention on se-
curity and the changing and more complex nature of
firewall systems, security analysis capabilities have
become more advanced in the way that they repre-

2



sent security and policy and allow administrators to
reason about vulnerabilities [12, 3, 10]. However,
the advances have been less in terms of firewalls
and more in terms of complicated attack patterns—
essentially, threat-modeling approaches tied to spe-
cific network topology and network participants. With
that comes the same drawbacks of the threat-modeling
approach: complicated to perform, and tied to a spe-
cific implementation, discouraging (though not rul-
ing out) software diversity.

The specification of policy with a formalized lan-
guage is also a heavy research area. Several lan-
guages, such as the Ponder project [5] are very rig-
orous. Such detailed policy language design is, how-
ever, out of the scope of this paper.

3 Architecture

The essential problem addressed by this project has
four basic pieces. First, the establishment of coor-
dinated network probing; second, the collection of
data from the probes; third, the summarization of
this data; fourth, the policy validation and commu-
nication with the user. The basic architecture of the
system to address these basic pieces is a three-layer
hierarchy of functionality with a virtually unlimited
possible hierarchy of responsibility.

3.1 Nodes

The system consists of a network of programs on
multiple hosts performing different duties. There are
three kinds of programs, or three components to the
system, as follows:

Prober nodes A Prober node is capable of answer-
ing very simple questions about network con-
nectivity, which essentially has the structure of
a simple destination or source question that re-
sults in a yes or no answer. The Prober node’s
capability can be expanded in the future to
measure things like bandwidth with minimal
disruption to the essential functionality of the
node.

Manager nodes A Manager node coordinates prob-
ing between a subset of Prober nodes and other
subordinate Manager nodes, and collects the
data generated by the Prober nodes (or other
Manager nodes) so that it can be used by the
Wizard program. The Manager can spawn both
subordinate Managers or Probers on any sys-
tem it has access to, thus, from a single Man-
ager node, an entire network of Probers and

Administrator’s Console
Manager

Firewall Firewall

Prober
Manager

Prober Prober Prober Firewall
Prober

Manager
Prober Prober Prober

Prober
Manager

Prober Prober

Figure 1: An example network

Administrator’s Console
Manager

Firewall Firewall

Prober
Manager

Prober
Manager

ProberProberProber

Firewall

Prober ProberProber
Prober

Manager

ProberProber

Figure 2: The example network with the policy val-
idation control hierarchy emphasized

subordinate Managers can be spawned remotely,
bending around any network topology restric-
tions to present a unified network view to the
Wizard.

Wizard nodes The Wizard node is the interface to
the system that the administrator has for ver-
ifying policy and interpreting test results. The
Wizard’s functionality is based around a basic
policy syntax—a policy can be translated into
this basic syntax, and the Wizard will interpret
the policy in that form along with the informa-
tion provided to it by the root Manager to an-
swer questions about whether or not the policy
has been violated or not, how it has been vio-
lated, and what parts of the policy cannot be
tested with the existing Manager/Prober net-
work.

This structure allows the system to be installed
on virtually any network, independent of network
topology. For example, on the network shown in
Figure 1, the system provides a convenient unified
network view, shown in Figure 2. This structure
does, however, present some restrictions, which are
discussed in Section 4.1.3.

3



3.1.1 Testing Completeness

When testing network connectivity, one of the most
important questions to answer is what counts as “con-
nected.” A trivial solution is to simply consider a sin-
gle successful TCP-handshake an indication of suc-
cessful connection. However, the point of an auto-
mated system of testing as is presented in this pa-
per is to find the “needle” mistake in the “haystack”
of working policy implementation. A single work-
ing connection does not verify in a full enough sense
that a given network can talk to another given net-
work. On the other hand, a full test of all hosts,
on all ports, to all other hosts on all other ports is
a massive undertaking that will take an extremely
long time, will use excessive amounts of resources,
and in the end is entirely impractical. Because a
full test of all combinations is not realistic, the final
judgment must be one based on probabilities, and
therefore, on a random collection of spot-checks. A
sampling of the possible connection tests that can be
done should be done, and a confidence level based on
their collective success should reported.

One of the drawbacks of large-scale testing is
the amount of time it takes to perform all of the
tests. Section 4.1.1 discusses the method for inter-
node communication, which does not allow for imme-
diate feedback, although it is well suited for multiple,
parallel, ongoing tests. Sending out test requests and
waiting for them to finish, however, is unavoidable,
and the more tests there are to do, the longer they
will take to be performed. As such, larger numbers
of tests become infeasible for testing purposes, and a
balance must be struck between the administrator’s
patience and the confidence level the administrator
wishes to attain. Realistically, the best solution is
one of widely deployed testers with near-continuous
random testing of policy, so that the coverage is more
complete, while at the same time providing the effect
of constantly monitoring the network for problems.

3.1.2 Fault Tolerance

A key element to any large system is how well it
handles the failure of a single element in the sys-
tem. Where this policy validation system is con-
cerned, there are two distinct kinds of failure.

Host Failure Any of the network hosts can fail at
any time. Generally, a host failure may be difficult to
distinguish from a network failure, from the perspec-
tive of the rest of the network. Recovery, however,
is somewhat different. The things that a node needs
to keep track of—subordinates, ongoing tests, pre-
vious test results, commands, the node ID, and so

forth—do not change very quickly, and it is possible
to store all of that information on disk. This way,
when a node goes down, it can be restarted with-
out loss of information, and from the perspective of
the other nodes in the network there was simply a
long network delay. Depending on the details of this
storage, it may be possible that a command is lost or
duplicated, however this is viewed as inconsequential
as long as the Wizard can identify missing tests as
not indicating anything about the connection it was
supposed to have tested.

Network Failure The network can obviously fail
at any time, or can simply not be laid out as ex-
pected. From this perspective, any command that
gets lost can be viewed as an unexpected, failed net-
work test. These can be ignored or reported to the
root Manager in some way, as they indicate a net-
work status that the administrator ought to be made
aware of. The system ought to be tolerant of tem-
porary network failure, however, and therefore at-
tempts should be made to retry failed connection
tests for some bounded length of time. Ideally, com-
mands should be linked, such that a “cleanup” com-
mand terminates all previous command connection
attempts. Where official connection tests are con-
cerned, since at some point the Wizard will ask for
all results, good or no, it is safe to simply continue at-
tempting after failure. Expected network failures, or
disconnected networks, require the administrator to
intercede and transfer affected commands in an out-
of-band manner. The key to bounding connection
attempts for most network events is the “cleanup”
command, which terminates all previous network ac-
tivity, allowing the administrator to decide how long
to wait for network activity to finish. The special
case is the “cleanup” command itself, which must
have it’s own policy for how long to continue retries.
Any policy will essentially be arbitrary and system-
specific, so that should be left to the administrator
to specify.

3.2 Policy Language

The policy language that the system uses is designed
to be both flexible and simple. A complete policy
description file has two parts, a preamble and a body.
Comments are permitted, and are denoted either by
a # or // symbol and extend to the end of the line,
or they are enclosed, on a single line, within /* and
*/ symbols.

The policy language described here is rudimen-
tary, but contains the basics necessary to express
a simple policy and is easily extended to allow for

4



many different policy details. This does not mean
that it has difficulty in expressing complex policies,
within the limits of the kinds of connections it can
describe. Figure 7 contains an example policy for the
network described in Figure 4. Even as complicated
a situation as that setup is, the policy to describe
it is simplistic. Strictly speaking, for a full descrip-
tion of a set of n network entities (entities that have
their own network policy attached to them, and can
be either full subnets or single hosts), there must be
n entries in the preamble of the policy, and at most
n2 − n entries in the body of the policy. That many
entries in the body can capture any set of connec-
tivity requirements within the limitations of the ex-
pressiveness of connectivity statements in the body.

An example of an even more complex network
than that in Figure 4 that can be described by this
policy language is the full University of Notre Dame
network. There are two main network categories,
ResNet and the rest of the on-campus network. ResNet
has some limitations in it’s communication with the
outside world, but no such restrictions on commu-
nication with the rest of campus. Within the on-
campus network, multiple departments have their
own networks. The Computer Science and Engi-
neering Department, for example, contains several
private computer clusters, including the ISS, Wom-
bat, CVRL, and Striegel Research Cluster. Addi-
tionally, the department hosts a few Hydra nodes,
the CSE networking lab, and an E-technology cell.
Each of these clusters have their own firewalls and
subnetworks. However, all of these networks can be
described by even a rudimentary policy language like
the one presented in this paper.

3.2.1 Preamble

The preamble of a policy description exists to set
up convenient naming, to allow the document to be
more human readable. The naming can be used to
name both networks and single hosts. The named
networks need not necessarily be connected to the
outside world or to any one of the other named net-
works. For testing purposes, however, all networks
should be accessible through some sequence of con-
nections back to the root node unless test requests
can be forwarded in some out-of-band way to a Man-
ager/Prober hierarchy and the results of those tests
can be returned to the Wizard’s purview for evalua-
tion. The named networks should be fully connected
within the network. This does not place any spe-
cific requirements on the topology of the network—
strictly speaking, only the Managers on the network
need to be able to contact the Probers and subor-

dinate Managers, while inter-Prober connectivity is
unnecessary.

The preamble consists of naming statements in
the form of the following:
network [name] [networkip] [netmask]

Names can consist of the letters a-z and A-Z, the
numbers 0-9, the underscore, and the pipe (|), or,
if they’re enclosed in single quotes, can consist of
anything but single quotes.

For example, to declare the “research” network
as being the 192.168.57.x subnet, one would use the
following line:
network research 192.168.57.0 255.255.255.0

A single host can be named either by using a full
netmask or by using a host line. The following two
lines are equivalent:
network webserver 192.168.1.1 255.255.255.255

host webserver 192.168.1.1

Neither Probers nor Managers are required to be
on any of the named networks, this is merely for con-
venience, though Probers that are not on a named
network will not be used. For lack of ambiguity, the
named networks and hosts must not overlap. In the
future, the Wizard may be able to distinguish be-
tween networks that share the same IP ranges by
analyzing the addresses of the Managers and com-
paring that to the connection map established in the
body of the policy description, however this is prone
to error. Perfect resolution of overlapping or dupli-
cated network addresses would require full network
topology information being encoded in the policy.

3.2.2 Body

The body of a policy description exists to establish
the state of the system as it should be—whether that
be to assert that network components (hosts or net-
works) should or should not connect. In general, it is
assumed that networks cannot connect unless stated
otherwise, so cannot-connect statements are strictly
speaking superfluous, however they are used in this
system to differentiate between the assumption that
network components cannot connect and the asser-
tion that network components should not connect.
In other words, network components that do not
have an established relation are not required to con-
nect, though they can, unbeknownst to the Wizard,
because it does not affect policy compliance. On
the other hand, components that have an explicitly
stated “cannot connect” or “can connect” relation-
ship offer a testable assertion. Undefined network
policy is viewed as the policy-maker’s problem.

Network component connectivity is set up with a
series of statements in the form of the following:

5



[name1] -> [name2] {on [port]} {via [IP]}
[name1] -X [name2] {on [port]} {via [IP]}

The portions of the statement within braces are
optional. The default port used for testing when
one is not specified is port 3333 (this could be ran-
domized in the future for more effective aberration
detection). The via extension is to indicate a non-
transparent firewall, such as a Linux-based firewall
host with an IP address on two or more networks,
performing standard network address translation. The
meaning of each line is to establish a specific rela-
tionship between one network component (the first
listed) and another (the second listed). If the ->
symbol is used, that indicates that the first network
component listed ought to be able to connect to the
second, possibly on a specific port or via some IP
address. If the -X symbol is used the first network
component must not be able to connect to the second
on whatever port listed via the IP address listed.

For example, to declare the “sales” network can
connect to the “research” network, but only on the
AOL Instant Messenger port (5190), one would use
the following line:
sales -> research on 5190

4 Implementation

The implementation of the system to demonstrate its
feasibility comes in two basic parts. The first part of
the system is the workhorse of the system: the Man-
ager/Prober architecture, described in Section 4.1.
This part can exist independently of the other as
a good framework for distributing commands while
working around network topology. The second part
of the system can be considered the brains of the
system: the Wizard, described in Section 4.2. The
Wizard is the part that interprets the policy file (de-
scribed in Section 3.2), and uses the Manager/Prober
network for validating that policy. The Wizard could,
theoretically, be swapped out for another policy-tester
that could, for example, be more intelligent or more
thorough about what tests to run, or could simply
use the Manager/Prober architecture to do network
mapping.

4.1 Managers & Probers

Both Managers and Probers use a similar implemen-
tation style. Both are implemented in bash [13].
Bash, an interpreted language, was chosen for two
primary reasons. Firstly because it is a very com-
mon interpreted language and thus can be deployed
with little fore-knowledge of the system it will be
deployed on. Secondly because bash is very good at

handling the interesting file redirection, threading,
process monitoring, and signal handling tricks that
are necessary for setting oneself up as a “server” to
respond to queries and perform all of the necessary
activities. Because of the use of bash, which is well-
suited to file manipulation, and also because it makes
crash-recovery possible, all status information about
the servers is kept on disk. This includes the list of
subordinates, any ongoing network tests, the server’s
ID, and so forth. In this prototype, this information
is kept in a series of directories that stores key-value
pairs by associating filenames with the first line of
the contents of text files. For example, a Manager’s
list of subordinates is kept in a subs/ directory. The
files in this directory all are named with one of the in-
ternal names of the subordinates that belong to this
Manager. The first line of their contents (subsequent
lines are ignored at present) is the IP address of the
subordinate. A similar scheme is used for storing all
other status information.

4.1.1 Communication

The definition of a communication protocol allows
multiple implementations of the Manager and Prober
node software to work together, which enables pos-
sible a degree of device-independence and opens the
door for avoiding a monoculture. Managers and Probers
both use a communication protocol based on the
same concept as Maildir [16] folders.

Maildir folders are structured as a set of three
directories—new, tmp, and cur—within a parent di-
rectory. When a new mail must be delivered to the
Maildir, a file is created with a unique name in the
tmp directory. The data of the message is then writ-
ten to the file. When the file is complete, the file is
moved from the tmp directory into the new directory.
On most filesystems, a move is an atomic action.
When a mail client reads messages from the Maildir,
it looks for files in the new and cur directories. In
this way, the client avoids mistakenly reading incom-
plete mail messages. Also, no file locking is necessary
when reading or delivering, allowing multiple deliv-
eries and multiple mail clients simultaneous access to
the directory. Simultaneous deliveries are made pos-
sible by the new-file naming scheme, which can in-
volve the date, random numbers, the process ID, the
file’s inode number, and several other things in or-
der to guarantee unique file names even under heavy
load with multiple simultaneous deliveries. The ex-
act name of the file is irrelevant to a mail client, of
course.

There are many features of Maildirs that are de-
sirable for the Manager/Prober communication mech-

6



anism, from the ability to avoid file locks, to the abil-
ity to allow multiple simultaneous commands, to the
prevention of misinterpretation due to partial com-
mands being received. The use of this mechanism
for sending commands also places some restrictions
on the Managers and Probers—namely, they require
some local, writable disk space. But the most im-
portant feature of the Maildir mechanism in this
context is the ability for the system to use many
different mechanisms for command relay—any valid
file transfer or creation mechanism will work—which
avoids being reliant on specific network features for
command transfer. An RPC mechanism is alterna-
tive method for relaying commands from Manager
to Prober and back, but such an RPC mechanism
would place network connectivity restrictions and re-
quirements on the system that are rather inflexible.
For example, the RPC mechanism requires an ad-
ditional, specific, open port on the Prober that the
Manager can communicate with. On the other hand,
with a file-based command system, any mechanism
for communication can be used to create such files.
In the prototype implementation, SSH is used for not
only spawning new nodes but also for file-transfer,
but this is not a logical requirement of the commu-
nication mechanism. Commands and responses can
even theoretically be relayed from one node to an-
other by hand if necessary.

As they run, the Probers and Managers check the
command directory, akin to the Maildir new directory,
once every second for new commands. Commands
are small, one-line files that are deleted as soon as
they are interpreted. New commands can be placed
in the command directories using any file transfer
method, although the prototype Managers use ssh
and scp to transfer and manipulate the files [17], al-
lowing for security and unsupervised behavior with
properly managed ssh keys. This system of com-
mand distribution is essentially a form of “message-
passing” behavior implemented over SSH, which elim-
inates the need for the Managers and Probers to have
a permanent network listener, and simplifies the im-
plementation a great deal.

Both programs also use additional folders as per-
manent data storage, for recording things like what
are the process identifications of currently running
ttcp sessions, what are the results of the connec-
tivity tests, and where are all of a Manager’s sub-
ordinates. This transparency allows for decentral-
ized system setup—a single administrator need not
be responsible for setting up Probers and Managers
throughout a large network, but there can be some
regional responsibility, with information about each
network simply added to the relevant already run-

129.74.154.226

129.74.152.6

129.74.155.226

12.149.183.90

192.168.0.130

192.168.0.131

Figure 3: An example network connectivity graph

ning Manager. Managers do not even need, neces-
sarily, to be aware of the full extent of their subor-
dinate trees. Commands from a higher level contain
full “routing” information, by virtual of the namingh
scheme, allowing middle-Managers to store very lit-
tle information—they need only know about their
direct subordinates—to remain fully functioning.

As part of initial testing, the Managers can even
create a graph of the connectivity data they have ac-
cess to. Figure 3 is a simple example of this graphing
capability.

4.1.2 Internal Names

Managers and Probers have an internal set of names
(IDs) to identify each other and the tests that are
performed. These IDs are hierarchical, identifying
the full path from the root Manager, and thus pro-
viding command routing information for any Man-
ager further up the tree to forward commands to
their eventual destination when the commands are
given with an ID for a destination. Each new Man-
ager gets its ID from its immediate superior in the
hierarchy. The ID is constructed from the ID of the
superior manager, a dot, the letter “m”, and a unique
number (within the scope of that superior Manager),
in that order. A similar construction is used for gen-
erating Prober IDs, except the letter “p” is used in-
stead of the letter “m”. Tests are named with the ID
of the requester of the test, with a period, the letter

7



“t”, and a unique number appended to it. Probers,
once they get a test command, identify which side
of the test they were on by appending a period and
the letters “l” (on the listening end) or “t” on the
transmitting end. For the Wizard’s purposes, the
structure of the names is irrelevant, as long as that
structure is maintained when issuing commands to
the root Manager. An example of the IDs in practice
can be seen in Figure 6.

4.1.3 Restrictions

As networks get larger, they tend to contain a broader
and broader range of systems. Ideally, for a gen-
eralized network firewall policy validator, the fewer
requirements the validator has and the fewer restric-
tions it places on network and system design, the
broader appeal it will have. Many of the decisions
in the design of the prototype system have been for
the purposes of interoperability and keeping the re-
quirements that the validator places on the overall
network as low as possible. However, the implemen-
tation does have some requirements. Several of the
requirements are implementation-specific, some are
not.

Design Restrictions Requirements that are in-
herent to the design include the requirement of writable
disk storage of some form. Without a writable disk,
the Maildir mechanism breaks down. Also, while
it is not a strict requirement, the design encour-
ages some level of network connectivity between the
hosts in the system—generally, a Manager must be
able to connect to it’s subordinates. Because com-
mands may be relayed by hand by an administrator,
this is not a strict requirement of the design. This
connectivity requirement has some repercussions on
the network topology that can be canvassed by this
system—disconnected subnetworks, for example, can
be tested, but must be tested by hand. Since there is
no auto-detection of nearby Probers, very dynamic
networks are very hard if not impossible to test.

There is also the issue of “users” to take into ac-
count with firewalls. One of the features of fancier
host-based firewalls is to restrict or allow network
communication based on what user is triggering the
communication (by owning the process that is doing
the communication, for example). While the design
of this system does not specify that all Prober nodes
must be running as particular user, it does not in-
clude any provisions for testing multiple users on a
single host. This is not an insurmountable obstruc-
tion, however, on most POSIX-style systems, only
the Administrator or root-user of a machine can pre-

tend to be another user sufficiently in order to, for
example, test the user-based firewall rules. Were ad-
ditional provisions for testing connections based on
users to be added to the system, this would require
the nodes doing the testing to have such Adminis-
trator or root access, which opens the system up to
further security concerns.

Similarly, because the Prober nodes may not nec-
essarily have root access to their hosts, some policy
rules, such as those involving ports under 1024, may
be untestable.

Implementation Restrictions The implementa-
tion places additional restrictions on the systems.
The prototype implementation requires, specifically,
SSH [17] access between Managers and their subor-
dinates. Commands may be relayed by hand, but
the implementation contains no provision for notify-
ing the administrator to relay commands. Of course,
communication via SSH requires hosts to be running
a standard SSH server. The prototype implementa-
tion also requires, for unattended, remote operation,
that the SSH access be possible without requiring a
password be typed in for every command. This can
be achieved with an SSH authorization key, but the
security of this key and of the accounts that may be
accessible with it is left to the administrator. The
use of SSH has the benefit that all command commu-
nication is encrypted, and the use of the key makes
it more difficult for an attacker to attempt to send
arbitrary commands.

Because the prototype Manager and Prober node
servers are written in the bash language [13], hosts
to be used for the purpose of being a Manager or a
Prober must have bash installed on them. This lim-
its the possible machines that can host Manager or
Prober servers to machines that are running POSIX-
compliant operating systems. Additionally, the net-
work connection testing is built around the network
testing tool ttcp, which must also be installed on
the machines that host Prober servers.

4.1.4 Prober Commands

Probers understand a very small set of commands,
relating to their small range of capabilities. The
commands are as follows:

nop Just like the CPU instruction, this means “do
nothing”

flush This instructs the Prober to terminate all on-
going tests (ttcp control threads) and generate
results for them.

8



cleanup This instructs the Prober to do a “flush”,
and then to exit.

l [port] {u|t} [testid] This instructs the Prober
to start a ttcp control thread to listen on the
specified port, via either TCP or UDP, and to
store the result in a file with the specified test
identifier.

t [ip] [port] {u|t} [testid] This instructs the Prober
to start a ttcp control thread to attempt a
connection to the specified IP address on the
specified port, via either TCP or UDP, and to
store the result in a file with the specified test
identifier.

4.1.5 Manager Commands

Managers understand a larger set of commands than
the Probers do, in a large part because of their ex-
panded responsibility in the network. Managers are
responsible for not only coordinating tests, but also
passing along commands to subordinate Managers,
collecting data, and even finding out their full subor-
dinate tree if necessary. The commands the Manager
modules understand are as follows:

nop Just like the CPU instruction, this means “do
nothing”

cleanup This instructs the Manager to send a “cleanup”
signal to all of its subordinates (both Managers
and Probers), and then exit

iptest [proberip] [proberip] [port] {u} This in-
structs the Manager to test a connection be-
tween the Probers on the specified IP addresses
on the port specified, via either TCP or UDP,
assuming that both of the IP addresses speci-
fied belong to direct subordinates of the Man-
ager.

test [proberid] [proberid] [port] {u} This is
the same as the “iptest” command, but uses
IDs rather than IPs. Because it uses IDs, the
Probers may not be direct subordinates, but
may belong to a subordinate Manager some-
where in the Manager’s subordinate tree. The
ID contains the ancestral information neces-
sary to route the command to the proper Man-
agers.

prober [ip] This spawns a new Prober at the spec-
ified IP address and sets it up as a subordinate
of this Manager.

testport [port] This does an all-pairs test of all
subordinate Probers the Manager knows about,
on the specified port.

graph This fetches the connection test data from
the Probers, and creates a connection graph,
like the one in Figure 3.

manager [ip] This spawns a new Manager at the
specified IP address and sets it up as a subor-
dinate of this Manager.

managercommand [id] [command] args This
sends the specified command and all its argu-
ments to the specified Manager. This ID must
be a subordinate of this Manager.

subordinates This collects the IDs and IP ad-
dresses of the full subordinate tree of this Man-
ager, and puts them in files, one per ID, in the
“./subs/” directory.

proberlisten [id] [port] {u|t} [testid] This sends
an “l” command to the specified Prober for
the specified port and TCP/UDP combination,
and tells the Prober to identify it with the spec-
ified test ID. The specified Prober must be a
direct subordinate of this Manager.

probersend [id] [port] {u|t} [testid] This sends
a “t” command to the specified Prober for the
specified IP address, port, and TCP/UDP com-
bination, and tells the Prober to identify it
with the specified test ID. The specified Prober
must be a direct subordinate of this Manager.

flushprobers This informs the Manager to tell all
of its subordinate Probers to finish their tests
immediately, and collects the results.

4.2 Wizard

The Wizard is written in C, to allow for more compli-
cated memory management and faster “reasoning”
about test results than would be easily accomplished
by using bash. In combination with C, the Wiz-
ard uses a Lex/Yacc scanner/parser system to inter-
pret the policy file, allowing for a more complicated
language—although the current language is not very
complex, there is much room for expansion.

The Wizard is meant to be run from within the
folder containing the root Manager—the Manager at
the root of the hierarchy, generally referred to as the
“root” Manager. This root Manager should have
been issued a “subordinates” command before the
Wizard is run, so that the Wizard can know what
Prober nodes are available.

9



As the policy file, as defined in Section 3.2, is in-
terpreted the Wizard builds up several cross-referenced
lists of what networks are where, which should con-
nect to which, and on what ports. Then the Wiz-
ard collects the information about what Probers are
available (as reported by the root Manager’s “subor-
dinates” call) from the files in the “./subs/” direc-
tory. Each Prober is associated with a network on
the basis of its IP address—this is the primary reason
that disconnected networks cannot currently share
an IP range: because of the difficulty in associating
a Prober with one of those networks without more
information about the network topology embedded
in the policy (this is considered an open problem).
The Wizard runs through the list of connectivity as-
sertions for each network, determines whether or not
there are any Probers available to test the assertion.

The determination of Prober availability is based
on IP address and connection type. Generally, con-
nections merely need at least one Prober on both the
source and destination networks, however the “via”
keyword allows for more interesting setups. Because
the “via” keyword indicates an opaque firewall, to
test the specified connectivity the Wizard needs at
least three Probers; one on the source network, one
on the “via” IP address, and one on the target net-
work. The assertion is only determined to be upheld
if all chosen Probers on the source network can com-
municate with the Prober on the “via” IP address
and the Prober on the “via” IP address can commu-
nicate with the chosen Probers on the destination
network and the Probers on the source network can-
not communicate with the Probers on the destina-
tion network. If there are sufficient Probers to test
an assertion, the test pairings are encoded as “test”
commands, and are added to a list in memory.

If there are insufficient Probers available for any
one of the policy assertions, the Wizard informs the
administrator which networks lack Probers and which
policy assertions cannot be tested without them, and
asks if the administrator would like to test the re-
maining testable assertions. If there are sufficient
Probers, or if the administrator gives the Wizard
permission to test with insufficient Probers, the Wiz-
ard then fills the root Manager’s command directory
with all of the test commands it stored in memory.

Once the test commands have been issued, the
Wizard again prompts the administrator for how
long to wait for the tests to complete. This length
of time is entirely dependent upon network topology
and how many tests were issued. In the future the
policy assertions may be associated with time, re-
quiring an even longer wait for results. Future work
may include an active polling by each Manager to

determine the outcome of any tests it has issued, so
that the root Manager may actually be able to sim-
ply wait for the tests to complete (with a maximum
outer bound, of course). Once the administrator has
determined that enough time has passed, the Wizard
sends the root Manager a “flushprobers” command
to collect all test data. Finally, the results can be
examined by the Wizard, allowing it to, on a line-
by-line or on-the-whole basis, report back to the ad-
ministrator whether or not the policy appears to be
correctly implemented over the whole network.

4.3 Setup

As with any system that is designed for the “real”
world, some attention must be paid to how easy it
is to install and prepare for use. The prototype is
slightly more difficult than a production-ready sys-
tem would be, but is still fairly easy. The installa-
tion comes in three steps: first, designing the hierar-
chy around network topology, second, preparing the
hosts, and third, spawning servers and connecting
them together.

The first of the three steps requires, obviously,
knowledge of the network topography. Generally,
fully-connected networks need a single Manager and
as many Probers as is practical. From there, arrang-
ing for subordinates should flow naturally from what
is connected to what. Relatively invisible network
topography, such as hubs and switches, can most
likely be ignored, though some of the more advanced
switches may require that subordinate Managers be
used to get around them.

Once the duties of the various hosts in the system
have been determined, the hosts must be prepared
for the servers. Essentially, connectivity must be
checked, an account for the Probers must be set up
(one with an impossible-to-guess password is prefer-
able), the SSH key must be placed in the correct loca-
tion (usually ~/.ssh/authorized_keys), and both
bash and ttcp must be installed on the systems to
be used as Probers (most likely, all of them).

Finally, the servers should be spawned and in-
formed of each other. An easy way to do this, if SSH
connectivity is working through the entire hierarchy,
is to run the root Manager and tell it what subor-
dinate servers to spawn. The Managers can spawn
Prober and Manager nodes on remote hosts and au-
tomatically assign them unique names. For discon-
nected networks, or for administrators who don’t
necessarily have access to the root Manager, Probers
and Managers can be spawned by themselves, as-
signed names in the hierarchy, and their superiors
notified of their existence by placing appropriate files

10



in the record-keeping folders of those superiors.

5 Evaluation

5.1 Results

The initial results indicate that the system performs
as described. A preliminary test was performed over
the relatively simple network outlined in Figure 4.
There are three major networks: “brk”, “cse”, and
“iss”. Although the connections aren’t drawn, any
system in the graph that is connected to the “inter-
net” can connect to any other system that is con-
nected to the “internet”.

Managers and Probers placed on the systems in
the network as indicated in Figure 5, with the irrel-
evant network topography laid out in dotted lines.
The layout of the Manager and Prober hierarchy is
clarified in Figure 6. In both graphs, subordinate
relations are indicated by the non-dotted edges—
subordinate Managers are indicated by a solid edge,
and subordinate Probers are indicated by a dashed
line. Each large shape is a host on the network, with
its IP address listed at the top and underneath is a
list of the relevant programs running on the node.

In this test system, the Wizard successfully veri-
fied the policy—which was already known to reflect
the networks’ connectivity (reflected in Figure 4).
This simple policy is given in Figure 7. When the
policy was modified to specify that communication
was desired between the “iss” network and the “cse”
network, the Wizard correctly reported that the pol-
icy was being violated. Finally, when the test was
attempted without the Probers in the “cse” network,
the Wizard correctly demanded more Probers be in-
stalled in order to test the policy.

5.2 Lessons Learned

A platform independent hierarchical command struc-
ture is a highly successful method of controlling dis-
tributed network testing programs. While there were
some difficulties designing the bash servers they seemed
to stem primarily from bash’s lack of a pre-compiler
and a lack of experience writing large programs in
bash. Once the system was in place, it performed
very well, working around the most common network
topology restrictions with ease. A simple and rather
straightforward Wizard implementation seems en-
tirely sufficient for most networks, however the naive
implementation has some restrictions that a more
advanced implementation, with some modification
to the policy language, could remove. This system

BRK network

CSE network

ISS network

internet

129.74.155.226 129.74.152.2129.7.152.6

192.168.0.130192.168.0.132

24.11.249.68

192.168.0.131

172.16.0.16 172.16.0.17

Figure 4: The testbed network

BRK network

CSE network

ISS network

192.168.0.130
Wizard

Manager

192.168.0.132
Prober

192.168.0.131
Prober

24.11.249.68
129.74.155.226

Manager

internet

129.74.152.2
Prober

129.7.152.6
Manager

Prober

172.16.0.16
Prober

172.16.0.17
Prober

Figure 5: The testbed hierarchy with network layout

11



BRK network

CSE network

ISS network

24.11.249.68
Prober - base.p4

192.168.0.130
Wizard

Manager - base

192.168.0.132
Prober - base.p1

192.168.0.131
Prober - base.p2

129.74.155.226
Manager - base.m1

Prober - base.p3

129.74.152.2
Prober - base.m1.p2

129.7.152.6
Manager - base.m1.m1

Prober - base.m1.p1

172.16.0.16
Prober - base.m1.m1.p1

172.16.0.17
Prober - base.m1.m1.p2

Figure 6: The testbed hierarchy

network iss 172.16.0.0 255.255.0.0
network cse 127.74.0.0 255.255.0.0
network brk 192.168.0.0 255.255.0.0

brk -> nd
brk -> iss via 129.74.152.6

cse -> brk via 24.11.249.68
cse -> iss via 129.74.152.6

iss -X nd
iss -X brk

Figure 7: The testbed policy

prototype, however, illustrates the potential of this
architectural approach.

6 Conclusions

The job of a system administrator is a hard one,
made ever more so by the increasing size, complex-
ity, and importance of the systems that need to be
administered. As the firewall is one of many valu-
able tools in waging the war against computer hack-
ers, testing and evaluating the deployment of those
firewalls is equally valuable. In particular, the abil-
ity to compare system-wide network security policy
to system-wide firewall implementation. This paper
presents an architecture for doing precisely that—
using a large set of connection testers (Probers) and

a tree-layout of command and communication links
(Managers), with a single command-and-control point
(Wizard) that understands a simple language for ex-
pressing security policy in a testable way. Inter-node
communication is specified in a generic way, using
the file-based Maildir algorithm, allowing for a large
degree of adaptiveness to different network require-
ments.

Because an all-points to all-points test of the pol-
icy is infeasible, positive validation can only be done
in terms of a confidence level, expressed as a per-
centage of successful network tests that have been
completed compared to the total number of tests
possible. Of course, the discovery of a single dis-
crepancy (allowing for retries) indicates conclusively,
with 100% confidence, that the policy is not being
followed. The median used by the prototype is to
simply continue testing until the administrator wants
to know an answer, at which point the current con-
fidence level is reported.

The prototype implementation of this architec-
ture successfully accommodated a reasonably com-
plex network and network communication policy eas-
ily, and verified that the test network’s firewalls (and
other network features) correctly implemented the
policy.

References

[1] Hiralal Agrawal, Joseph R. Horgan, Edward W.
Krauser, and Saul A. London. Incremental re-
gression testing. pages 348–357.

12



[2] Khalid Al-Tawil and Ibrahim A. Al-Kaltham.
Evaluation and testing of internet firewalls. Int.
J. Netw. Manag., 9(3):135–149, 1999.

[3] Paul Ammann, Duminda Wijesekera, and Saket
Kaushik. Scalable, graph-based network vul-
nerability analysis. In Proceedings of the 9th
ACM conference on Computer and communica-
tions security, pages 217–224. ACM Press, 2002.

[4] Yih-Farn Chen, David S. Rosenblum, and
Kiem-Phong Vo. Testtube: A system for selec-
tive regression testing. In International Confer-
ence on Software Engineering, pages 211–220,
1994.

[5] Nicodemos Damianou, Naranker Dulay, Emil
Lupu, and Morris Sloman. The ponder policy
specification language. Lecture Notes in Com-
puter Science, 1995:18–??, 2001.

[6] David Evans. Static detection of dynamic mem-
ory errors. In SIGPLAN Conference on Pro-
gramming Language Design and Implementa-
tion (PLDI ’96), 1996.

[7] K. Fischer, F. Raji, and A. Chriscicki. A
methodology for retesting modified software. In
Proceedings of the National Telecommunications
Conference, pages 1–6. IEEE Computer Society
Press, 1981.

[8] Ronda R. Henning. Security service level agree-
ments: quantifiable security for the enterprise?
In Proceedings of the 1999 workshop on New
security paradigms, pages 54–60. ACM Press,
2000.

[9] Sotiris Ioannidis, Angelos D. Keromytis,
Steve M. Bellovin, and Jonathan M. Smith. Im-
plementing a distributed firewall. In Proceedings
of the 7th ACM conference on Computer and
communications security, pages 190–199. ACM
Press, 2000.

[10] Calvin Ko, Deborah A. Frincke, Terrance Goan,
Jr., Todd Heberlein, Karl Levitt, Biswanath
Mukherjee, and Christopher Wee. Analysis of
an algorithm for distributed recognition and ac-
countability. In Proceedings of the 1st ACM con-
ference on Computer and communications secu-
rity, pages 154–164. ACM Press, 1993.

[11] Larry W. McVoy and Carl Staelin. lmbench:
Portable tools for performance analysis. In
USENIX Annual Technical Conference, pages
279–294, 1996.

[12] Cynthia Phillips and Laura Painton Swiler. A
graph-based system for network-vulnerability
analysis. In Proceedings of the 1998 workshop
on New security paradigms, pages 71–79. ACM
Press, 1998.

[13] Chet Ramey. Bash, the Bourne-Again Shell. In
ROSE 94. The Romanian UNIX User Group,
1994.

[14] Marcus J. Ranum. Thinking about firewalls. In
Proceedings of Second International Conference
on Systems and Network Security and Manage-
ment (SANS-II), 1994.

[15] Frank Swiderski and Window Snyder. Threat
Modeling. Microsoft Press, 2004.

[16] Sam Varshavchik. Benchmarking mbox versus
maildir. http://www.courier-mta.org/mbox-vs-
maildir/, March 2003.

[17] Tatu Ylönen. SSH – secure login connections
of the internet. In Proceedings of the Sixth
USENIX Security Symposium, San Jose, Cali-
fornia, USA, July 1996. USENIX.

13


