
Investigation of the Power–Performance Trade-off in
High-Performance Processors

Todd Hoffenberg Kyle Wheeler

August 14, 2003

Abstract

Demand for devices that are power-conscious
is obvious and growing, and the need for scal-
ing back power dissipation for heat concerns
is pressing. However, power does not linearly
correspond to performance, and a balance can
be achieved. Several design-space changes are
considered and evaluated using sim-wattch. In
cache design, an effective level 1 cache is an
absolute necessity. Leakage power in level 2
cache (and lower levels) can be drastically re-
duced by transitioning unused blocks to a low-
power state that preserves cache elements; di-
viding a level 2 cache into superblocks and in-
troducing a buffer of superblocks to keep ac-
tive can drastically cut leakage power at min-
imal performance cost. For a baseline config-
uration, issue width, decode width and RUU
size are varied and are found to correspond di-
rectly to power consumption. Several branch
prediction strategies are tested, showing bimodal
to be the most useful, and 2-layer to be the
most interesting.

1 Introduction

Demand for portable devices that are ever more
capable and have ever more battery life con-
tinues to increase, while at the same time heat
dissipation and the upward trend of CPU heat

production (and thus power consumption) com-
bine to make reducing power consumption one
of the most pressing problems in micropro-
cessor architecture today. There are many ap-
proaches to the problem which include things
as exotic as redesigning the architecture to al-
low finer-grained pipelines to be turned off to
conserve power, and things as approachable as
reevaluating the utility of existing functional
units and design decisions based on their per-
formance to power consumption ratio. It is
easy to take for granted that more power means
better performance, and that less power means
reduced performance, however power does not
linearly lead to performance. Thus, in many
situations, it may be possible to find a design-
space “sweet spot,” where the power to speed
trade-off is the best—in other words, in what
configuration do we get the most bang for the
least buck. This paper is a step in that di-
rection, using the Wattch simulator and power
consumption model to evaluate several of the
design decisions and functional unit sizes with
regard to power consumption.

Some of the largest power consumers on a
modern microprocessor die are the cache con-
figuration and the branch predictor. However,
while the two features use a lot of power, at the
same time they are saving power by keeping
the processor from doing unnecessary work.
To test our ideas and to explore the power con-
sumption relations, we used sim-wattch [4].

1



Sim-wattch is an extension to SimpleScalar that
tracks power usage as well as the other per-
formance metrics that SimpleScalar normally
measures. Sim-wattch was run on MacOS X
10.2 and on RedHat Linux, kernel version 2.4.18-
14 with minor changes to the source code to
get it to compile. The wattch sim-outorder.c
and cache.c were modified to support super-
block switching simulations discussed herein.

2 Caches

At a minimum, caches dominate the chip area
of a modern microprocessor, even those tar-
geted for embedded systems. In the past, larger
cache sizes did not mean a large associated in-
crease in power. This is because most of the
power consumed in a cache has been due to
transistor switching, and only one cache block
is addressed for each access. Consequently,
accessing lower level caches naturally increases
power consumption, so a good level 1 cache
will provide the most obvious reduction in power.
For the sake of minimizing access times, level
1 caches are typically direct mapped. How-
ever, level 2 caches are more often set-associ-
ative. For the sake of speed, all possible ele-
ments in a set are compared to the address tag
for determining a cache hit in parallel. There-
fore, increasing associativity will increase the
amount of compare operations per access and
correspondingly increase power.

In modern processors, most of the power
consumed by a cache is in the form of keeping
parasitic leakage involved in keeping volatile
caches powered. This leakage power consump-
tion is the prominent power drain at and below
the 0.10 micron barrier [6]. Reducing the level
2 cache size should, therefore, reduce power
consumption by the chip. This must be bal-
anced against I/O speed and I/O power over-
head to fully consider an appropriate configu-
ration.

Figure 1: Performance and Power Consump-
tion of Level 1 Cache Configurations

Additionally, work in reducing the leakage
power has expanded by providing circuitry that
actively holds state in selective cache blocks
by selecting a lower rail voltage supply [13]
[14]. Several strategies have been proposed by
[11] to take advantage of this, but we propose
a different technique that yields better results.

2.1 Level 1 Cache Configuration

Two different level 1 cache configurations are
considered. These are the 32k–32k data/in-
struction cache and the 16k–16k data/instruction
cache configurations. Figure 1 illustrates the
relative performance and power of each as re-
ported by sim-wattch [4].

The performance metric (IPC) and power
difference are very small between the two caches.
The 64k total level 1 cache size configuration
is recommended because it avoids going to lower
cache hierarchies more often, and other pro-
posed power reduction strategies degrade level
2 cache performance. This setup is assumed
for subsequent simulations.

2.2 Level 2 Cache Associativity

The performance and power consumption rel-
ative to level 2 cache associativity is highly
correlated. This is due to the large speed and

2



Figure 2: Performance and Power Consump-
tion of Level 2 Cache Associativity Configu-
rations

lower penalties associated with I/O and also
due to the variance on the number of cache
entries relative to cache associativity. Figure 2
illustrates the relative performance and power
of different associativities.

The optimal associativity for this 1MB L2
cache with a 64-byte block size seems to be
4-way associative. This is assumed for subse-
quent simulations.

2.3 Level 2 Cache Size

To test the impact of leakage power, L2 cache
size was varied. Smaller caches create more
misses, so the impact of I/O power consump-
tion must also be considered. Figure 3 illus-
trates the relative performance and power of
different level 2 cache sizes.

The optimal performing cache is a 1MB
cache. Leakage power is not much of a fac-
tor here, but this is likely due to the default
setup of sim-wattch. As will be shown later,
leakage power can be drastically reduced, so a
1MB cache is power-performance optimal and
is assumed for subsequent simulations.

Figure 3: Performance and Power Consump-
tion of Level 2 Cache Sizes

2.4 Leakage Power

2.4.1 Prior Work

In [17], gating Vdd is proposed as a mehtod of
reducing cache leakage power. In this method,
unused cache elements can be completely shut
down by switching off the rail voltage supply.
This technique was applied at the block level
in [8]. However, so-called gated-Vdd cache
configurations necessarily lose the data stored
in a cache block when it is shut off. The deter-
mination of what data can be affordably elim-
inated is difficult, and the problem becomes
more complex when highly associative caches
are considered. The penalty for switching off
the wrong cache block is severe, requireing an
access to lower memory hierarchies. A so-
lution to that problem has been proposed in
[13] [14]. By using a small circuit, a lower
supply voltage can be used for selected inac-
tive blocks. This voltage is just enough to
preserve cache state when it is not being ac-
cessed. However, an access to a “sleeping”
cache block would require awakening the cache
block. The circuit presented in [11] provides
120mv to sleeping cache blocks, but it requires
a large time to allow settling of the virtual ground
when putting cache blocks in a state-preserving
state (some 50 cycles). This is further compli-
cated by a minimum rise time for supplying

3



power to a sleeping cell of about 1V/10ns [14].
One additional consideration is that lower-volt-
age cells are more easily affected by alpha par-
ticle radiation [12]. Additional error correc-
tion bits assure correct operation, but the over-
head in using this error correction, the frequency
of incorrect readings, and the penalties asso-
ciated with a bad cache read are not yet ana-
lyzed.

In [11], a speculative shut-down of cache
blocks that have been moved from level 2 cache
to level 1 cache performs well, saving more
than 30% leakage power. Combining this with
a Decay-II cache presented in [8] where cache
blocks that have not been accessed after a cer-
tain time are plced in the low leakage state
introduces a 75% savings in leakage power.
These strategies are good, but there is poten-
tial or more savings.

2.5 Superblock Switching

Logically, a cache can be divided by the high-
est order address bits into partitions dubbed
superblocks. If the number of superblocks is
small (initially, we will assume four), then sub-
sequent accesses to a cache are assumed to be
in the same superblock. Thus, we can naively
predict the superblock of the next cache ac-
cess as simply the superblock of the previous
cache access. This allows the remaining su-
perblocks to be in the inactive state, saving
a large amount of recoverable leakage power.
These sequential type access patterns are typi-
cal of a level 1 cache, but this method is gener-
ally not applicable to this cache for three rea-
sons. First, level 1 caches are small relative
to lower levels and consequently consume less
leakage power. Second, the overhead in de-
termining a superblock is small, but for deep
pipelined processors, it may result in an un-
acceptable penalty to level 1 access time. Fi-
nally, even if that overhead can be eliminated,
a one cycle penalty for activating a new su-

perblock in the event of a misprediction can
seriously cripple performance.

Thus, utilizing superblock sectioning is lim-
ited to level 2 caches for our analysis. In the
first scheme, superblocks are only awakened
when they are accessed from a sleep state. The
remaining superblocks are then put into a power-
saving sleep state. For sequential cache ac-
cesses that span superblocks (i.e. large array
accesses), it may be useful to preemptively ac-
tivate superblocks before they are accessed.
This can be done by first assuming a larger
number of superblocks (say 8 or more) and
then activating a fixed number of neighbor-
ing superblocks in either direction. However,
this scheme is generally unsuccessful in sur-
passing the nominal 4-superblock approach.
This supports the idea that level 2 cache ac-
cesses are more or less random at the super-
block level. This is likely due to the fact that
most sequential accesses are going to be cov-
ered by higher level cache space.

It can be reasonably assumed, however, that
a given executing program is going to store
data in the address space of only a few dif-
ferent superblocks. Which superblocks those
actually are may be random, but repetitive ac-
cess to superblocks may occur. Introducing
a superblock buffer, a small cache of recently
accessed superblock tags, can solve this prob-
lem. This provides additional superblocks to
keep active, but it implies smaller superblocks
and virtually eliminates the benefit of consid-
ering superblock neighbors. A fully-associative
superblock buffer with an LRU replacement
scheme would require the smallest buffer; but,
for hardware simplicity sake, a direct-mapped
buffer is used. This may also serve to min-
imize any additional latency imposed by the
buffer. This additional latency ought to be nonex-
istent because the buffer must only be updated
on a mispredicted superblock access where a
cycle penalty is already assumed, and the buffer
update can be done in parallel with the already

4



Figure 4: Leakage power savings and per-
formance for various superblock switching
strategies.

slow cache access.
Figure 4 presents the results for several dif-

ferent configurations of the number of super-
blocks, the number of superblock neighbors
to either side of the previous access that are
active, and the size of the superblock buffer
(X–Y–Z, respectively in the figure elements).
The graph contains the percentage recoverable
savings in leakage power, which is simply the
number of sleeping cache superblocks divided
by the total number of superblocks. It also
graphs the superblock misprediction percent-
age, which is the percentage of level 2 cache
accesses that require waking up a cache super-
block.

The simulated misprediction numbers are
an average over the spec95 integer benchmarks.
The best performance is by the 128-superblock
16-element buffer strategy, where all of the
mispredictions are in fact compulsory and serve
only to fill the buffer. Even more savings in
power are possible by moving to a 256-super-
block scheme with a 16-element buffer. In all
benchmarks besides the JPEG benchmark, the
misses are entirely compulsory. Even in the
JPEG benchmark, the non-compulsory misses
are very small. By activating 1 neighbor to ei-
ther side of the last accessed superblock, nearly

all non-compulsory misses are eliminated in
the JPEG benchmark at only a slight increase
in leakage power consumption.

3 Branch Prediction

When examining nearly any nontrivial trace
of power usage for modern processors, one
of the major power consumers is the branch
predictor, which consumes around 22% of the
power, with some small (less than one percent)
variance depending on the prediction method
used, the power conservation of the rest of the
chip, and the specific load. Depending on the
method of branch prediction used, however,
the power used can vary significantly. This
agrees with common sense, that complicated
branch prediction uses a fairly sizable cache,
and does a fair bit of computation for every
conditional statement—and in typical code, con-
ditional branches are very common.

3.1 Bimodal

While bimodal branch prediction uses a sig-
nificant portion of power, it’s CPI-per-power
unit ratio remained fairly constant as the size
of the bimodal buffer was varied (see Figure
6). This would seem to indicate that vary-
ing the size of the bimodal buffer has a very
direct translation to performance, and that if
this branch predictor is used, determining how
much power can be saved is a merely a ques-
tion of how much power to spend for perfor-
mance, and that there is no obvious optimum
balance.

3.2 2-Layer

Interestingly, 2-level branch prediction has rather
unintuitive behavior, which is that the more
area of silicon that is devoted to it, either by
increasing the size of it’s L1 layer or it’s L2

5



Figure 5: Bimodal CPI vs. Buffer Size

Figure 6: Bimodal CPI/Power vs. Buffer Size

Figure 7: 2-Layer Branch Predictor CPI by
Benchmark for Resource Variance

Figure 8: 2-Layer Branch Predictor
CPI/Power by Benchmark for Resource
Variance

layer, the less it helps the CPI (see Figure 7).
Again counter-intuitively, the less silicon that
is devoted to the 2-level branch predictor, the
more power it uses (see Figure 8). One can
only speculate why the power increases with
the decrease in area; however, the useful con-
clusion one can draw from the data gathered
is that the size of the second layer is not as
important to the performance of the predictor
(in terms of CPI per power) as the size of the
first layer. Thus, with a smaller second layer,
the CPI per power unit increases more per in-
crease of the size of the first layer than with a
larger second layer.

6



Figure 9: Combination Branch Predictor CPI
by Benchmark for Meta Table Variance

Figure 10: Combination Branch Predictor
CPI/Power by Benchmark for Meta Table
Variance

3.3 Combination

The combination branch predictor has very sta-
ble and linear characteristics, even more so
than the bimodal branch predictor. The com-
bination branch predictor, as the meta table
size varies, has virtually the same CPI per bench-
mark (see Figure 9). By the same token, the
combination branch predictor’s CPI to power
unit ratio is also very stable (see Figure 10).
The CPI to power unit ratio for the predic-
tor does decrease linearly (and universally) as
the size of the meta table increases, but only a
very little, suggesting that the meta table is a
rather power-efficient design.

4 Feature Considerations

When examining the power consumption of
the rest of the Simple Scalar processor func-
tional units, a few features are obvious hot spots—
the register update unit (RUU), the issue and
decode widths, and the functional units them-
selves.1 Similar to modifying the caches or the
branch predictors, these features may not nec-
essarily scale performance linearly with regard
to power, and so there may be in many cases a
configuration where the trade-off between the
two is the best.

4.1 Register Update Unit

As the size of the Register Update Unit (RUU)
is increased, the CPI of the benchmarks tested
decreases rather dramatically up to about 16
entries, and then adds little further performance
improvements (see Figure 11). The CPI per
unit of power decreases along a similar curve
(see Figure 12). Essentially, as RUU size in-
creases (and thus so do the power requirements),
the RUU does not provide as much more of
a performance boost. The sweet spot for the
Simple Scalar RUU seems to be around 8 or 4.
While RUU sizes of 16 or more are definitely
faster, the difference in CPI per power unit be-
gins to get low enough that the extra power
for more RUU units doesn’t buy enough extra
speed to be worth the extra power for power-
conscious applications.

4.2 Issue and Decode Width

Issue and decode width are tightly coupled when
it comes to modifying them to improve perfor-
mance—extra issue width is not very useful
without extra decode width, and vice versa,

1The clock is a major power consumer—more-so
than perhaps any other single feature on a micropro-
cessor. However, modifying the clock signal is outside
the scope of this paper.

7



Figure 11: CPI by Benchmark for RUU Vari-
ance

Figure 12: CPI/Power by Benchmark for RUU
Variance

Figure 13: CPI for the Spec95 gcc Bench-
mark, for Issue Width and Decode Width

because they are bottlenecks for each other.
Thus, instead of varying them separately, they
must be varied together.

The CPI of the benchmarks tends to vary
in small and very symmetric ways—that is,
lessening the issue width by one yields the same
performance penalty as yielding a decode width
(Figure 13 is a good example of this symme-
try). What is interesting is that the CPI per
power unit ratios are very much not symmetri-
cal at all, demonstrating across the board that
issue units are much more important for per-
formance than decode units are—indcating that
decode units are preferable for turning off or
leaving out of the die in order to save power.

4.3 Execution Units

The benchmarks used did not seem to use the
integer multipliers at all,2 so integer multipli-
ers were ignored. Also, the utility of the inte-
ger units is limited by the issue and decode
width. For the purposes of consistency, all
testing was done with the default issue and

2Varying the number of integer multipliers in all but
two circumstances (in which the effect was less than
0.001 CPI) had no effect on CPI.

8



Figure 14: CPI for the Spec95 go Benchmark,
for Issue Width and Decode Width

Figure 15: CPI for the Spec95 jpeg Bench-
mark, for Issue Width and Decode Width

Figure 16: CPI for the Spec95 li Benchmark,
for Issue Width and Decode Width

Figure 17: CPI/Power for the Spec95 gcc
Benchmark, for Issue Width and Decode
Width

9



Figure 18: CPI/Power for the Spec95 go
Benchmark, for Issue Width and Decode
Width

Figure 19: CPI/Power for the Spec95 jpeg
Benchmark, for Issue Width and Decode
Width

Figure 20: CPI/Power for the Spec95 li
Benchmark, for Issue Width and Decode
Width

Figure 21: CPI by Benchmark for Integer
ALU Count Variance

decode widths of four, which is why the CPI
varies very little between four and eight ALUs
(see Figure 21). For that matter, CPI doesn’t
vary much more between four and three ALUs.
This information is essentially the exact same
information that is conveyed by the CPI per
power unit data (see Figure 22). After the sec-
ond ALU is added to the system, the CPI per
power unit differences are relatively minor, sug-
gesting that for this issue and decode width of
four, two integer ALUs is the best trade-off.

10



Figure 22: CPI/Power by Benchmark for Inte-
ger ALU Count Variance

5 Conclusions

Traditionally, the largest power consumption
in modern processing has been directly related
to the amount of instruction level parallelism
support in a processor configuration. Specif-
ically, the consumption by most architecture
units is shown by [18] to scale proportional to
a power of the issue width. This result is ver-
ified using the sim-wattch toolkit [4]. Addi-
tionally, varying the register update unit (which
provides out-of-order execution) size are shown
to scale performance non-linearly with respect
to power. Generally, issue width should be
optimized for performance rather than power
consumption. Hardware controlled by the OS
to selectively turn off parallel units could cut
power drastically, but the performance detri-
ment is too large to dismiss ILP hardware.

A non-trivial amount of power is consumed
by cache hierarchies. As caches scale to 50%
of chip area and beyond, the power spent in
maintaining the state of cache blocks will be-
gin to dominate. This leakage power over-
takes all other chip consumption at the 0.10
micron feature size [6]. Prior techniques in re-
ducing the leakage power consumption have
reported up to 75% savings in leakage energy
[11]. The impact on performance is not easily
quantified, but a reported increase in energy-

delay product of 2.3% suggests a very signif-
icant hit [11]. In simulation, a more effective
strategy is proposed. Just as in [11] and [8],
this strategy runs cache blocks at a minimum
voltage when they are suspected to be unused.
By separating caches into large superblocks
and preemptively turning on superblocks be-
fore they are accessed, as much as 93% of the
cache can be in a power saving state, and less
than 1% of cache accesses result in a large
clock-cycle penalty due to a mispredicted su-
perblock access. The power overhead of su-
perblock accessing ought to be smaller than all
strategies presented in [11] because per-block
control is not necessary. Clearly, this strat-
egy holds great potential because of its com-
paratively minimal overhead and small perfor-
mance hit. Even in processors where power
consumption isn’t a large consideration, this
technique makes sense to reduce the heat pro-
duction of a processor (this providing higher
stable clock speeds).

Modern branch prediction units consume
some 20% of the power of a typical proces-
sor, as reported by sim-wattch. Unsuccess-
ful branch prediction strategies counteract the
benefits of instruction level parallelism, forc-
ing pipeline stalls and wasting processor power
and performance. Thus, the focus for a low-
power microprocessor must be to choose a branch
prediction strategy that is accurate and is ar-
chitecturally minimal. For the configurations
tested, no single branch prediction is shown
to be the most effective at reducing power and
providing performance. Combined branch pre-
diction methods are discouraged because they
require the most hardware for marginal per-
formance returns, and bimodal predictors do
well, but are power expensive. 2-layer pre-
dictors should be investigated more, to explain
their unique power characteristics.

11



6 Future Work

The effect of instruction level parallelism (ILP)
on power is well characterized. Suggested im-
plementations that can scale the level of ILP
dynamic need to be explored further. This needs
to be compared to voltage-stepping and clock
reduction techniques.

For the reduction of leakage power, more
robust benchmarking is an absolute necessity.
The simulation code needs to be expanded to
incorporate appropriate penalties for sleeping
and reviving a cache block. A fully-associative
superblock buffer with a least-recently used
replacement scheme instead of a direct-mapped
buffer could increase returns on smaller buffer
sizes, but the configuration is untested. Addi-
tionally, the problem of multitasking is practi-
cally intractable for the simulation configura-
tion; this is suspected to have a large impact
on the level 2 cache access patterns, thus po-
tentially degrading the performance of super-
block switched caches. Combining this with
other proposed techniques [11][8] for reduc-
ing leakage power consumption may prove even
more useful at reducing leakage power con-
sumption. Exploration of this technique in level
1 cache may be a worthy endeavor.

Lastly, branch prediction strategies are thor-
oughly characterized in the literature. The ef-
fect of branch misprediction on power (because
of pipeline flushing) demands further study.

References

[1] Ning An, Suhanva Gurumurthi, Anand
Sivasubramaniam, Narayanan Vi-
jaykrishnan, Mahmut Kandemir, and
Mary Jane Irwin. Energy-performance
trade-offs for spatial access methods
on memory-resident data. The VLDB
Journal — The International Journal on

Very Large Data Bases, 11(3):179–197,
November 2002.

[2] Ana-Maria Badulescu and Alexander
Veidenbaum. Power efficient instruction
cache for wide-issue processors.

[3] Luca Benini and Giovanni de Micheli.
System-level power optimization: Tech-
niques and tools. ACM Transactions
on Design Automation of Electronic Sys-
tems (TODAES), 5(2):115–192, 2000.

[4] David Brooks, Vivek Tiwari, and Mar-
garet Martonosi. Wattch: A frame-
work for architectural-level power anal-
ysis and optimizations. In Proceedings
of the 27th Annual International Sympo-
sium on Computer Architecture, pages
83–94, Vancouver, British Columbia,
Canada, 2000. ACM Press.

[5] Ramon Canal, Antonio González, and
James E. Smith. Very low power
pipelines using significance compres-
sion. In Proceedings of the 33rd
Annual ACM/IEEE International Sym-
posium on Microarchitecture, pages
181–190, Monterey, California, United
States, 2000. ACM Press.

[6] A. Chandrakasan, W. J. Browhill, and
F. Fox. Design of high-performance mi-
croprocessor circuits. 2001.

[7] Daniele Folegnani and Antonio
González. Energy-effective issue
logic. In Proceedings of the 28th Annual
International Symposium on Computer
Architecture, pages 230–239, Göteborg,
Sweden, 2001. ACM Press.

[8] S. Kaxiras, Z. Hu, and M. Martonosi.
Cache decay: Exploiting generational
behavior to reduce cache leakage power.
ISCA-28, June 2001.

12



[9] Daehong Kim, Dongwan Shin, and Kiy-
oung Choi. Low power pipelining of lin-
ear systems: A common operand cen-
tric approach. In Proceedings of the
2001 International Symposium on Low
Power Electronics and Design, pages
225–230, Huntington Beach, California,
USA, 2001. SIGDA, ACM Press.

[10] Jinson Koppanalil, Prakash Ram-
rakhyani, Sameer Desai, Anu
Vaidyanathan, and Eric Rotenberg.
A case for dynamic pipeline scaling.
In Proceedings of the International
Conference on Compilers, Architecture,
and Synthesis for Embedded Systems,
pages 1–8, Greenoble, France, 2002.
ACM Press.

[11] L. Li, I. Kadayif, Y-F. Tsai, N. Vi-
jaykrishnan, M. Kandemir, M. J. Ir-
win, and A. Sivasubramaniam. Leak-
age energy management in cache hier-
archies. In Proceedings of the 11th In-
ternational Conference on Parallel Ar-
chitectures and Compilation Techniques,
2002.

[12] T. May and M. Woods. Alpha-particled-
induced soft errors in dynamic memo-
ries. IEEE Trans. on Electronic Devices,
26(1), January 1979.

[13] P.R.V.d. Meer and A. V. Staveren.
Standby-current reduction for deep sub-
micron VLSI CMOS circuits: Smart se-
ries switch. In ProRISC/IEEE Workshop,
pages 401–404, December 2000.

[14] B. Nikolic. State-preserving leakage
control mechanisms, September 2001.

[15] G. Palermo, M. Sam, C. Silvan, V. Za-
ccari, and R. Zafalo. Branch prediction
techniques for low-power VLIW proces-
sors. In Proceedings of the 13th ACM

Great Lakes Symposium on VLSI, pages
225–228, Washington, D. C., USA,
2003. ACM Press.

[16] Massoud Pedram. Power minimization
in IC design: Principles and applica-
tions. ACM Transactions on Design Au-
tomation of Electronic Systems, 1(1):3–
56, January 1996.

[17] S. Yang, M. D. Powell, B. Falsafi,
K. Roy, and T. N. Vijaykumar. An
integrated circuit/architecture approach
to reducing leakage in deep-submicron
high-performance i-caches. In HPCA-7,
January 2001.

[18] V. Zyuban and P. Kogge. Optimization of
high-performance superscalar architec-
tures for energy efficiency. In Proceed-
ings of the 2000 International Sympo-
sium on Low Power Electronics and De-
sign, pages 84–89, Rapallo, Italy, 2000.
ACM Press.

13


