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LOAD BALANCING FOR HIGH-SPEED PARALLEL NETWORK INTRUSION

DETECTION

Abstract

by

Kyle Bruce Wheeler

Network intrusion detection systems (NIDS) are deployed near network

gateways to analyze all traffic entering or leaving the network. The traffic at

such locations is frequently transmitted in such volumes and speeds that a

commodity computer quickly becomes overwhelmed. NIDS must be able to

handle all of the traffic available. The SPANIDS platform addresses this prob-

lem with a custom hardware load balancer that spreads traffic over several

NIDS sensors. The load balancer ensures that sensors do not become over-

loaded by shifting traffic between sensors while maintaining network flow

continuity when possible. The balancer must be resistant to attacks designed

to overwhelm it. This work outlines the design of the SPANIDS load balancer

and evaluates its performance using simulation. Several design points are ex-

amined, including overload detection, locating overload causes, and several

overload avoidance techniques. The simulation results confirm the viability

of the SPANIDS architecture for scalable parallel network intrusion detection.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Network intrusion detection systems (NIDS) are generally deployed at choke-

points in networks in order to analyze all outgoing and incoming traffic. Un-

fortunately, the traffic at such locations is frequently transmitted in such large

volumes and at such high speeds that a commodity computer cannot receive

and analyze all of the traffic. An intrusion detection system’s effectiveness is

directly related to its ability to analyze all of the traffic it is given — it cannot

report what it cannot detect. Network intrusion detection presents a unique

network capacity problem because NIDS are typically deployed as transpar-

ent systems to prevent attackers from detecting and attacking the NIDS di-

rectly. Such transparency requires that the NIDS cannot be in the critical path

of network communication and thus cannot request that senders slow down

to allow it to process all of the traffic, whereas regular network-connected

hosts can. The Scalable Parallel Network Intrusion Detection System (SPANIDS)

addresses this problem with a custom hardware load balancer that spreads

network traffic over a set of NIDS sensors. The load balancer attempts to en-

sure that none of the sensors become overloaded while maintaining the con-

tinuity of network connection flows when possible so as not to preclude state-
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ful traffic analysis. The sensors participate in overload avoidance by notifying

the load balancer when their individual packet load is approaching overload

levels.

1.2 Background

In terms of efficiency and cost effectiveness, the importance of computer

security from exploitation attempts and intrusions via the Internet is increas-

ing rapidly. A complete network security system has many aspects, including

parts designed to prevent an attack, parts designed to thwart an ongoing at-

tack, and parts designed to determine whether an attack is occurring. A net-

work intrusion detection system (NIDS) falls into this latter category. Specif-

ically, a NIDS is a system for recognizing network-based attacks by analyzing

network traffic. NIDS identify network traffic as one of two categories, “ma-

licious” traffic and “benign” traffic, thus assisting administrators’ responsive

and defensive efforts. As such, NIDS have become a critical part of secure

network-connected systems.

1.2.1 Undetected Attacks are Successful Attacks

NIDS allow administrators to monitor the network and discover when and

specifically what malicious activity is occurring. Assuming that malicious ac-

tivity is equally likely in all traffic, the probability of detecting malicious ac-

tivity is directly proportional to the percentage of the available traffic that is

examined. If a NIDS cannot examine all available traffic, there is a risk that

malicious activity will go undetected — a risk that increases as the amount

of traffic the NIDS cannot examine increases. Undetected malicious activity
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cannot be countered, and is more likely to cause serious damage.

1.2.2 Network Characteristics

Network traffic frequently exhibits “bursty” behavior, meaning that net-

work packets tend to travel in clusters [4]. The packets in clusters typically

have very small inter-packet gaps, while at other times network packets are

more spread out with larger inter-packet gaps. An inter-packet gap is the time

between the end of one packet and the beginning of the next packet. When

bursts of packets arrive at a network-connected host, the packets may arrive

faster than that host can receive them. To compensate for this inability to

handle temporary bursts of rapidly arriving network packets, most computer

systems use buffers to store packets until they can be processed. Once the

buffers are filled, further packets cannot be stored for later processing and

will be ignored, or “dropped.”

In ordinary TCP network traffic, the sender and receiver cooperate to adapt

their rate of communication to their ability to communicate and to the load

the network will bear. For instance, if the sender sends packets faster than the

receiver can understand them, the receiver will not acknowledge them. Miss-

ing acknowledgments will cause the sender to reduce the number of packets

it may send while awaiting acknowledgments, thus reducing communication

speed. Unlike such typical network communication, a NIDS is not in the crit-

ical path of network traffic: it is neither the sender nor the primary receiver

of the traffic. Most NIDS attempt to be undetectable, eavesdropping on net-

work communications rather than participating in them. Some systems build

upon NIDS for automated response, but a pure NIDS is just a sensor. Because
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a NIDS cannot participate in the communications it is monitoring, it cannot

affect the rate of that communication. Therefore it must be able to analyze

packets at least as quickly as any host on the protected network in order to

be effective. A NIDS generally tracks multiple network conversations at once,

requiring it to be even faster still.

1.2.3 Hardware Characteristics

In a typical network-connected computer, when a packet arrives via the

network, the packet is first received by the network interface controller (NIC),

which decides whether to notify the computer’s operating system of the packet’s

arrival based on the packet’s destination. For example, in Ethernet networks,

NICs use the MAC address to filter packets. However, since NIDS listen to

all network traffic, the NIC cannot be allowed to shield the operating system

from traffic not addressed to it. Thus, in a computer performing network in-

trusion detection, all packets cause the NIC to notify the operating system.

The NIC notifies the operating system by generating a hardware interrupt and

copies the contents of the packet into main memory. The interrupt, the re-

sulting system call, the context switch because of the interrupt, and moving

the packet into the operating system’s packet buffer takes time away from the

packet analysis work the network intrusion detection sensor software must

do. More importantly, in the time it takes the computer to enqueue the new

packet and return to analyzing previously received packets, another packet

may arrive that needs to be enqueued. Such a quick turn-around prevents the

computer from making progress in analyzing received packets and emptying

the packet buffer. New packet arrivals preventing analysis of already buffered
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packets is particularly problematic in systems on very fast network connec-

tions with small inter-packet gaps.

1.2.4 Basic Network Intrusion Detection

The most basic NIDS layout is a single system connected to a shared net-

work of some kind — Ethernet is popular [4] — listening to all of the traffic on

the network. Software on this computer takes every packet it receives from

the network and analyzes it, looking for malicious traffic. An example of this

layout is illustrated in Figure 1.1.

NIDS

Figure 1.1. Shared Network NIDS Layout
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Shared, or hub-based Ethernet networks, however, are being replaced by

switch-based Ethernet networks. On carrier-detect networks like Ethernet,

switch-based networks protect network connected hosts from the unneces-

sary interference of other hosts on the network, thus increasing the average

available bandwidth by reducing the scope of a packet transmission. In so

doing, switch-based networks prevent hosts on the network from seeing all

traffic on the network, prompting a move of NIDS from the middle of the net-

work to choke-points. A choke-point in a network is generally the gateway

from the network to other networks and the Internet. Companies and uni-

versities that have large networks generally pay for a single connection to the

Internet and perhaps a second fail-over connection, both of which are choke-

points. An example of this layout is illustrated in Figure 1.2. While a NIDS

at a choke-point cannot receive all of the traffic on the protected network, it

can receive all traffic entering or leaving the protected network. Thus, at this

one point, one can monitor both incoming attacks and out-bound infections.

Notice that the NIDS is still not designed to participate in the critical path of

communication, and in fact receives a copy of the network traffic sent to the

router from a one-way network tap.

There are some security systems that use NIDS to interfere with the net-

work [19], but most do not. Some networks have NIDS scattered throughout

the network to obtain more detailed information about possible malicious ac-

tivity within the network. However, the most common location for a single

NIDS deployment is at a choke-point.

6



LAN
Tap

Router to
Internet

NIDS

Figure 1.2. Choke-point NIDS Network Layout

1.3 The Problem

1.3.1 Networks Are Too Fast

Network traffic speeds and volume are increasing at an exponential rate.

Simple Ethernet networks have increased in speed tenfold almost every four

years over the past few decades. Bandwidth has accelerated from ten megabits

per second 10Base-T Ethernet in 1991, to 100 megabits per second 100Base-T

Ethernet in 1995, to one gigabit per second Ethernet in 1998, and most re-

cently to ten gigabits per second Ethernet in 2002. This increase in speed far

outstrips the ability of any single network host to keep track of every packet
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transmitted on a network [8, 32]. For instance, Schaelicke et al used the indus-

try standard NIDS software Snort on several different processors each equipped

with a 100 megabits per second Ethernet card. The most capable system

tested, a 1.2GHz Pentium III, dropped significant numbers of packets with

a mere 560 attack signatures to match against each packet — far shy of the

default set of 2,910 attack signatures that come with Snort. In Schaelicke’s ex-

periments, the Pentium III did better than even faster Pentium IV systems.

As Pentium IV CPUs have larger pipelines and thus more interrupt overhead,

this indicates that the amount of interrupt overhead has a significant impact

on the ability of a processor to analyze packets. The gain in clock speed be-

tween the Pentium III and Pentium IV systems was not sufficient to overcome

the effect of the additional interrupt overhead from the Pentium IV’s deeper

pipeline; thus packet buffers filled with unprocessed packets and packets were

lost [32].

Schaelicke’s experiments demonstrate that the impact of interrupt over-

head is a problem that will not be alleviated by simply waiting for faster pro-

cessors to be developed. The methods that are employed to increase mi-

croprocessor speeds are typically related directly to increasing the pipeline

depth. Increased pipeline depth allows microprocessors to operate at higher

clock speeds, increasing throughput in terms of number of instructions per

second. Unfortunately, a larger pipeline requires the storage of more state

whenever there is a context switch. A context switch occurs every time there

is a hardware interrupt. If more state must be stored in order to handle an

interrupt, more time will be required to handle the interrupt [23]. Thus, the

increase in interrupt handling overhead mitigates the clock speed gains for
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applications that rely heavily on hardware interrupts such as network com-

munication.

In addition to transmitting packets very quickly, next generation networks

have a larger volume of packets than older networks. Extremely high band-

width network connections that need to be monitored can carry orders of

magnitude more data than a computer can handle. For example, typical high-

end memory bus bandwidth on commodity systems is about 16 gigabits per

second, while an OC-3072 transmits data at over 160 gigabits per second [16].

Network connections are generally designed to be used by many computers at

once, all trying to communicate at full speed. For this reason, aggregate net-

work bandwidth will likely remain far ahead of any single computer’s ability

to process it.

1.3.2 Custom Hardware is Inflexible

There are two general methods for addressing the inability of common

microprocessor architectures to deal with the overhead associated with net-

work communication and network intrusion detection as the speeds of net-

works increase. The first frequently used method involves carefully tuning

existing microprocessors to operate at the speed of the target network and

offloading as much of the network communication overhead as possible to

customized hardware. However, there are several problems associated with

this method. First, while tailoring microprocessors to the specific speed of the

network, timing tricks are employed that are difficult to repeat. Next, design-

ing systems to handle next-generation networks at gigabits per second and

faster is extremely difficult and expensive. When the network that needs to
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be monitored increases in speed, such custom systems are easily overloaded

and must be both redesigned and replaced, incurring additional cost. Addi-

tionally, while this method can be effective with current hardware and some

slower networks, such techniques provide only a small factor of improvement

in traffic handling speed. Networks are increasing in speed more quickly than

Moore’s Law, and the relatively small factor of improvement this technique

provides cannot affect the growth-curve disparity in the long run. Finally,

such techniques cannot compensate for any disparity between computer bus

bandwidth and network bandwidth.

1.3.3 Offloading Overhead Has Limits

The second method for addressing the problem of interrupt overhead is a

technique known as “interrupt coalescing.” In a system that uses this tech-

nique, the NIC is augmented with more memory and a queuing system. As

packets arrive at the NIC they are stored, several packets at a time, in on-chip

memory. The operating system is then notified of the arrival of packet clus-

ters rather than individual packets. This technique can change the overhead-

per-packet ratio significantly and has the potential to scale better than the

previous technique, particularly since latency is not a concern for network in-

trusion detection. However, this technique does not address CPU processing

limitations or pure memory bandwidth limitations and thus cannot cope with

extremely fast networks or very large amounts of bandwidth.
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1.4 Contribution

Unlike approaches aimed at eliminating overhead, like interrupt coalesc-

ing, or approaches targeting memory latency and single-host processing speed,

the SPANIDS project addresses the network intrusion detection capacity prob-

lem by creating a way that several sensors can cooperate to handle the full

network bandwidth even on very fast network links. By cooperating with a

small custom load balancer, sensors can reduce the number of dropped pack-

ets drastically, even when using commodity sensors. The system is also scal-

able, as additional capacity can be added to the system by adding more coop-

erating sensors.
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CHAPTER 2

SPANIDS DESIGN

2.1 Intrusion Detection Philosophies

There are several general techniques that NIDS use to categorize traffic

into “malicious” and “benign” traffic. For example, the software package Bro

uses a philosophy similar to that employed by many firewall administrators:

anything that is not expressly permitted must not only be forbidden but ma-

licious [28]. This philosophy provides complete protection against unknown

attacks, and rules that are too restrictive tend to be exposed quickly. Because

the full range of acceptable traffic is significantly smaller than the full range of

potentially malicious traffic, the analysis stage of Bro-like NIDS detectors can

be very fast. Unless extremely carefully written, however, the Bro approach

can lead to either a very large number of false positives, or large loopholes as

a result of a misguided effort to reduce false positives. Also, as the scope of ac-

ceptable network use increases, more valid-traffic recognition must be coded

into Bro.

The most popular technique is the opposite approach; most traffic is con-

sidered benign except for traffic that matches known attack signatures. This

approach is used by the open-source software package Snort [13, 31]. Snort

uses a long list of known attacks and attack signatures. These signatures are
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generally byte patterns that have been observed in network-based attacks by

others who use the software and have contributed the byte patterns to the

Snort-using community. The primary complexity of the Snort-like approach

is the pattern-matching algorithm — such as the Aho-Corasik [1, 27], Boyer-

Moore [2], or Wu-Manber [35, 36] algorithms — that are used to search cap-

tured packets for known malicious byte patterns.

2.2 Parallel NIDS Requirements

The problem that networks are faster than the computers they serve, and

how this disparity makes high-quality network intrusion detection extremely

difficult is now well understood. In situations where many computations need

to be performed but the outcome of any one computation does not depend

on the others, one solution is to perform the computations in parallel. The

first step to designing a parallel traffic analysis solution is to establish the ba-

sic requirements that are not speed related.

2.2.1 Flows

2.2.1.1 What is a Flow

When a host on a network wishes to send information to another host on

the network, the nearly universal mechanism is to segment the information

into chunks and then to use either TCP/IP or UDP/IP encapsulation for each

of the chunks. Each encapsulated chunk, or “packet,” is then sent over the

network to the destination host, which reassembles the packets into the orig-

inal data. Nearly all network traffic consists of these “connections” or “flows”

of related packets. In the case of TCP, a flow simply corresponds to a TCP con-
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nection, but even datagram protocols such as UDP often show connection-

like behavior. For instance, each NFS client maintains a logical connection

to the server, even though the underlying communication protocol is based

on datagrams and is inherently connection-less. These flows can be roughly

identified based on the tuple of source and destination host IP addresses and

source and destination TCP or UDP port numbers. Generally, two hosts com-

municating on the network will distinguish unrelated flows of packets be-

tween them by using different port numbers of each unrelated flow. However,

since there are only 65,535 distinct ports, port numbers will be reused. Thus,

for correct flow disambiguation, it is critical to consider both time and the

state of the flow. In the former case, if a flow has gone idle for a sufficient time

period, the flow can usually be considered ended and further packets with

the same address/port tuple can be considered a new flow. In the latter case,

a flow may be ended by either side, at which point the address/port tuple may

be reused at any time.

2.2.1.2 Flow Clustering

In order for a NIDS to work best, it must be able to determine what data

any given host will receive from the network. Many network-based attacks

can be encapsulated in a single packet — some cannot work unless transmit-

ted in a single packet. However, there are a large number of network-based

attacks that do not have this restriction and can easily be split across several

small packets. Each single packet may contain as little as a single byte of data,

which by itself is insufficient to consider malicious. But when the destina-

tion host reassembles all of the packets in the flow, they may form a malicious
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byte pattern. By dividing the attack into several small packets, an attacker can

evade detection by a NIDS capable solely of individual packet analysis.

Stateful flow-based traffic analysis requires that a sensor observes the com-

plete set of packets in a flow. This allows the sensor to assess the state transi-

tions of the traffic and reassemble the segments of data in order to determine

precisely what data each destination host will receive. A high-quality distribu-

tion mechanism will not inhibit stateful analysis by dividing network flows be-

tween several parallel NIDS sensors. Avoiding breaking network flows across

multiple sensors requires some ability to identify and track flows so that in-

dividual packets associated with a flow all will be sent to the same sensor as

other packets in the flow.

2.2.1.3 Flow Clustering Challenges

Unfortunately, fully distinguishing separate network flows — TCP, UDP,

and others — is prohibitively expensive in terms of storage. The volume of

possible flows needing to be tracked in a single second on an extremely fast

network is overwhelming. TCP flows, for example, have a maximum time-

out of approximately five minutes. Additionally, only a single 64 byte TCP

SYN packet is required to start a TCP flow over Ethernet (over other commu-

nication mediums, the minimum size may be as low as 40 bytes). In order

for a system tracking individual flows to be impervious to a trivial resource-

exhaustion attack, the system needs to be able to handle the extreme case of

every packet over a five-minute time span being a SYN packet. On a com-

munication medium like Gigabit Ethernet there can be 1,488,100 packets per

second [14]. That many SYN packets every second, over the course of the five
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minute TCP connection timeout, creates 446,430,000 new TCP connections

that must be tracked. Even if tracking any single flow is cheap, when every

individual flow is tracked, a simple resource exhaustion attack will overload

all but a perfect system.

If packets from broken connections can be logged by the sensors in a suf-

ficiently rapid manner, it may be possible to do some analysis on the logged

packets. If this can be done, it is possible to correct the problem of splitting

flows by analyzing all of the packets logged by all of the sensors and doing

detailed flow-analysis of the entire collection of packets. Unfortunately, this

is not a general solution to the problem of flow tracking. If large quantities

of packets are logged and subjected to such detailed analysis, eventually the

log analyzer will fall behind. If analysis falls behind the arrival of new data,

eventually there will come a point when either the storage for logging pack-

ets is full and further packets will be dropped or the detailed analysis is so far

behind that any evidence of maliciousness discovered is too old to be useful.

2.2.1.4 Flow Requirements

As discussed above, a good distribution mechanism should avoid distribut-

ing packets belonging to a single flow over multiple sensors. Additionally, a

secure distribution mechanism must be able to withstand attacks that target

its method of identifying flows, such as resource exhaustion attacks.
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2.2.2 Network Parallelism

2.2.2.1 Packet-level Parallelism

Network traffic is inherently parallel on several levels. At the lowest log-

ical level, the network is a mass of individual packets, any of which can be

a threat. A simple technique for exploiting this level of parallelism is known

as round-robin distribution, which distributes an equal number of packets to

all sensors. This technique involves rotating the sensor assigned to each se-

quential packet around the set of available sensors. Such an approach evenly

distributes network traffic along a useful logical fault line to achieve paral-

lelism. However, this technique does not preserve flows, and is thus subject

to the possible blind spots outlined in Section 2.2.1.2.

2.2.2.2 Flow-level Parallelism

Packet-level parallelism is not a very good level of parallelism to exploit

because keeping flows together is desirable. Thus, exploiting the parallelism

of the flows of network traffic is more useful. Traffic transmitted through

choke-points where NIDS are typically deployed is usually an aggregate of

large numbers of unrelated small network flows. Nevil Brownlee and K. C.

Claffy, working on the NeTraMet project, have found that approximately 75%

of TCP network traffic is less than 10 packets or two kilobytes in length, and

90% is less than 20 packets or 20 kilobytes in length [3]. This means that the

usual bandwidth that NIDS must analyze normally consists of very large num-

bers of small flows, each of which can be analyzed independently.
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2.2.2.3 Flow-level Parallelism Problems

Relying solely on flows to determine how to distribute network traffic across

the sensors in a parallel NIDS has a major drawback. Flows are controlled

by the hosts using the network. The general characteristics of network traf-

fic flows — such as average packet size, inter-arrival times, and the balance

of protocols used — change regularly due to the changing needs of the hosts

on the network over time. For instance, an ISP may experience mostly HTTP

traffic during the day, followed by large UDP packets used by file sharing pro-

grams in the evenings. Such shifts in network characteristics may cause shifts

in the load distributed across the set of parallel sensors, possibly overload-

ing some of the sensors. There is also the possibility that an attacker may

maliciously manipulate network traffic characteristics in an attempt to avoid

NIDS scrutiny. As an extreme example, an attacker could ensure that all pack-

ets in the network appear to be part of the same flow. If each flow is always

directed to a single sensor by the distribution mechanism, the single sensor

to receive the massive flow would be instantly overloaded and the other sen-

sors in the parallel NIDS would receive no traffic, rendering them essentially

useless. However, circumstances need not be so extreme to cause problems;

traffic characteristics need only shift enough to cause the distribution mecha-

nism to send more packets to a single sensor than it can handle in order to lose

packets and thereby allow some traffic to go unexamined. Succinctly, even a

single flow can overload a sensor. Thus, a strict distribution of entire flows to

sensors may still result in packet loss.
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2.2.2.4 Parallelism Requirements

To tolerate shifting non-uniform network characteristics and high-bandwidth

flows, packet loss avoidance requires the distribution mechanism to be aware

of excess load on any one sensor node and to be able to adjust the distribution

of network traffic across the sensors. In the extreme case of a single network

flow consisting of sufficient packets to overload a sensor, it may be necessary

to fall back to a packet-level distribution scheme that ignores flows, at least for

a sufficient amount of network traffic to alleviate the problem. Such an adap-

tive approach might expose the system to flow-based segmentation attacks,

but it is far better than dropping packets and allowing them to go unexam-

ined.

Packet-level distribution in the case of flows capable of overloading a sin-

gle sensor is not as unfortunate as it is in the general case. Presuming that the

sensors can analyze packets at least a quickly as any single host in the pro-

tected network can receive packets, a flow that overloads a sensor is a flow

that will overload its target host as well. Thus, if the goal of the attack is more

complicated than a simple overload attack, the attack packets must contain

sufficient malicious data to be effective even if the target host does not re-

ceive all of them. In such a circumstance, a packet-level distribution scheme

will likely not inhibit detection of the malicious payload.

2.2.3 Worst Case Planning

A parallel NIDS mechanism should not introduce any additional vulnera-

bilities to the NIDS. As discussed, existing single-host NIDS can be overloaded

with a flood of small packets, similar to a conventional denial-of-service at-
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tack. While a parallel NIDS directly addresses the capacity problem, it may

introduce new vulnerabilities through the distribution mechanism and load

balancing algorithm. The distribution mechanism must be able to handle and

recover from worst-case scenarios.

2.3 Layout

A generic NIDS, as illustrated in Figure 2.1, can be expanded to a generic

parallel NIDS with the introduction of a “splitter” module, as illustrated in

Figure 2.2. The splitter module is some set of hardware that will divide the

network traffic in some way and send those divisions to several NIDS sensors.

There are two basic approaches to organizing and implementing the splitter

section of the generic architecture illustrated in Figure 2.2. The first is to make

the splitter a part of the intrusion detection analysis framework, and the sec-

ond is to make the splitter a generic network flow separator.

2.3.1 Framework-based Splitting

Splitting the network traffic up in an intelligent manner that is a part of

the analysis and attack-detection functionality of the overall NIDS can be an

effective way to limit the amount of traffic to any single sensor.

Sensors generally have two primary operations: first to figure out what to

look for in a given packet, and then to look for it. The first of these two oper-

ations is frequently done by using simple rules based on the packet headers

to determine what content-based rules apply to the packet. Once the packet

category has been determined, the packet is searched for any of the many

known malicious byte patterns or “attack signatures” that apply to that cate-
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Figure 2.1. Generic NIDS

gory. It is frequently the case that single, simple rules allow the sensor to cat-

egorize packets very broadly and very quickly. In so doing, such simple rules

reduce the number of attack signatures that must be searched for in captured

network traffic. Similarly, it would be possible to separate this categorization

from the sensor itself to a separate network splitter, so as to quickly divide the

network traffic into known categories, each of which is directed to a dedicated

sensor for that category. This separation, generally, would drastically reduce

the amount of network traffic and thus number of packets that any one sen-

sor would need to examine. Additionally, such separation would reduce the

number of patterns that any one sensor must search for in the traffic it re-
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ceives, improving the sensor software’s efficiency and thus capacity to handle

large amounts of traffic without negatively impacting accuracy.

For example, as illustrated in Figure 2.3, if the only traffic that the sensors

know how to analyze is HTTP, FTP, and SMTP traffic, then it is easy for a split-

ter to simply send all HTTP packets one way, all FTP packets another way,

all SMTP packets a third way, and either drop everything else or send it to a

general-purpose sensor. This initial splitter can send the packets to sensors or

even to more detailed splitters. Subsequent splitters may be able to do even

more logical separation of the network traffic. The more hierarchical logical
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separations occur, the less traffic travels any one route through the system,

and the sensors that do the analysis get a very small slice of the original net-

work traffic sent to the NIDS.

LAN

Splitter

SMTP
Splitter

FTP
Splitter

Splitter

HTTP
Splitter

Proxies
Splitter

Requests
Splitter

Responses

Figure 2.3. Simple Framework-based Splitting Example

There are some critical drawbacks to this approach to distributing the net-

work traffic across an array of sensors. One drawback is that the hierarchical

layout is not easily reconfigurable. If new attack vectors are discovered and

new rules for the sensors are written, the layout of the splitters may need to
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be re-organized, which will likely require that the whole NIDS be taken offline

long enough to reconfigure the splitter-tree. Another problem with including

too much of the analysis system in the splitters is that the tree is not detector-

agnostic, which is to say, the splitter tree is tied to a particular network traffic

analysis software package, and more generally to a particular network traffic

analysis schema. Thus, changing or adding network traffic analysis software

may require reconfiguring the splitter tree, or may even be impossible if the

new analysis software does not lend itself to such offloading very well.

The primary, and most critical drawback of distributing traffic in this man-

ner is the problem of variable network characteristics, the extreme form of

which are narrow denial of service attacks (NDoS). NDoS attacks are denial

of service attacks whose packets are very similar or closely associated in the

logic of the detection system. Using parts of the detection logic to divide traf-

fic among several systems to avoid overloading them makes it difficult if not

impossible for the overall system to detect and handle load changes due to

variations in traffic characteristics. Thus, such a system cannot respond ef-

fectively to a sudden dramatic increase of traffic that follows a specific path

through the splitter tree. Without some adaptivity during an NDoS attack, a

single or a group of sensors may be required to suddenly deal with as much

as the full network bandwidth. In generalized non-hostile traffic, this would

likely not be a problem. Nevertheless, traffic mixes may change and require

more or less of the analysis logic to be offloaded into the splitter tree.
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2.3.2 Generic Splitting

The other method of splitting network traffic, and the one used by SPANIDS,

is to divide the traffic according to much simpler and somewhat more arbi-

trary criteria. Such a splitter must, rather than splitting along higher-level

protocol boundaries, split traffic up according to an inherent level of paral-

lelism within the traffic, as discussed in Section 2.2.2. The approach used in

the SPANIDS system is to split traffic along flow boundaries whenever possi-

ble, and packet boundaries when flow-based splitting is insufficient. Network

packets belonging to the same flow or connection are uniquely identified by

the tuple consisting of source and destination IP addresses and port numbers.

To distribute packets over a set of sensors, the splitter generates a hash value

for each packet based on the fields in that tuple. Each hash value is associated

with one of the sensor nodes the splitter is dividing the traffic between, and

dictates which sensor will receive the packet.

This approach addresses several of the requirements outlined in Section 2.2.1.2.

It does not limit the maximum number of concurrent flows or connections,

since the hash table size is fixed and independent of the number of flows. At

the same time, the design is sufficiently flexible to support varying numbers

of sensors with a single splitter device. Most importantly, network packets

belonging to the same flow always hash to the same value and are thus al-

ways forwarded to the same sensor node without incurring the cost of keep-

ing track of individual flows. In addition, this generic hash-based approach to

traffic splitting allows for greater flexibility in the system to adapt to changes

in network characteristics.
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2.4 Prototype Hardware

Though it is not part of the work presented here, it is useful to note that

a prototype implementation of the scalable distributed NIDS architecture of

SPANIDS is being implemented that will eventually provide more realistic data

to corroborate the simulation output presented in the next chapter. This ef-

fort ensures that the design decisions described in this paper result in a truly

scalable system capable of processing packets at wire speed, and also facili-

tates extensive performance characterizations under realistic network condi-

tions. The prototype system consists of a Xilinx Virtex-II FPGA [5] hosted in

the PCI slot of a commodity computer running the Linux operating system, a

commodity switch that implements the data plane of the load balancer, and a

collection of rack-mount systems as sensor nodes.

For each packet, the control logic determines the destination sensor and

rewrites the destination MAC address accordingly. The external switch then

forwards the packet to the associated sensor. Splitting the actual load bal-

ancer into the FPGA-based control logic and a data plane reduces the number

of network ports required on the FPGA board, and also reduces the logic de-

sign effort. Sensor hosts are running the open-source Snort network intrusion

detection software [13, 31], though there is no impediment to installing differ-

ent network intrusion detection software on them. A custom kernel module

on each sensor implements a POSIX RAW packet interface [15] that moni-

tors its buffer use and issues flow control messages to the load balancer as

necessary. A second switch routes alert messages from the sensor nodes to a

database system for further analysis and long-term storage.
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2.5 The Simulation

The SPANIDS system, like many hardware systems, is more convenient to

simulate than to build. To evaluate the performance of the SPANIDS load bal-

ancer, and to further refine the design and explore tradeoffs, a trace-based

event-driven simulator has been developed. Trace-based simulation is the

ideal tool for this purpose, as network traces can provide realistic workloads

to the simulator without needing the simulator to go through the overhead of

fully simulating traffic sources. This setup also closely corresponds to a real

implementation where a NIDS platform is offered a certain traffic load with-

out being able to influence it. The simulator implements a detailed and func-

tionally accurate model of the load balancer operation, including the hash

functions and tables, responses to flow control messages and promotion/demotion

of hash buckets.

A configurable number of sensor nodes are modeled as finite packet buffers

that drain packets at a rate based on the packet size. When the buffer use

reaches a configurable threshold, a flow control message is issued to the load

balancer. In the next chapter this simulator will be used to evaluate trends

and relative success of several design considerations.

Note that the simulator does not model the actual intrusion detection soft-

ware, as these details have no impact on the load balancer and would merely

provide more accurate packet drain speeds. Instead, the main focus of the

tool is to characterize the load balancer behavior and to refine design deci-

sions such as suitable traffic intensity measures, time-out values, and hash

table sizes.
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2.5.1 Trace Files

Two different network traces, both captured on the University of Notre

Dame campus Internet connection, are used for the simulations presented

in the next chapter. An older trace, which will be referred to as the “slow”

trace in this thesis, was recorded from a 45 megabits per second link. The

slow trace contains 1,402,229,593 packets captured over a 21 hour period on

December 1, 2002. The second trace, which will be called the “fast” trace in

this thesis, was recorded from a 200 megabits per second link. The fast trace

contains 38,599,994 packets captured over a forty minute period on June 9,

2004. These two traces do not contain denial of service attacks, though it is

probable that they contain several other types of malicious traffic.

2.5.2 Timing Accuracy

It should be noted that the traces described above are standard tcpdump [17]

traces. Tcpdump traces record timestamps for every packet indicating its ar-

rival time with a resolution of microseconds. Even for a network as slow as ten

megabit per second Ethernet, microseconds are insufficient to fully model ar-

rival times. Ethernet network links generally have an inter-frame gap (IFG),

also known as the inter-packet gap (IPG), of 96 bit-times. A bit-time is the

amount of time necessary to transmit a single bit. Ten megabits per second

Ethernet has a minimum IFG of 9.6 microseconds, 100 megabits per second

Ethernet has a minimum IFG of 0.96 microseconds, and one gigabit per sec-

ond Ethernet can have an even smaller IFG that depends on the medium — in

these simulations it is estimated to be 0.144 microseconds. Due to the inher-

ent inaccuracy of the timestamps stored in the trace files, many packets have
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identical timestamps. It is therefore sometimes necessary to enforce mini-

mum IFGs when the traces are used in simulation. In aggregate, the trends

should be accurate. Because trace files cannot contain sufficiently accurate

data, however, the simulator cannot exactly duplicate real world behavior.

2.5.3 Default Settings

In the simulations, certain defaults had to be chosen to enable compari-

son between radically different design considerations and to maintain a con-

sistent point of reference. In the next chapter the options available in each

critical section will be examined and evaluated based on simulation results.

Many of the simulator’s settings correspond to design alternatives that will be

described and discussed in detail in the next chapter. Nevertheless the de-

faults are listed here for reference.

For the simulations in the next chapter the “default” settings are as fol-

lows, and are used unless otherwise stated. The simulation will load balance

between twelve identical sensors. Each sensor is equipped with a Linux de-

fault buffer size of 64 kilobytes, and uses estimated overhead that approxi-

mates a 1.2GHz Pentium III processor. The simulated sensors have an inter-

rupt and system call overhead of 14.5 microseconds, a per-byte copy overhead

of 0.931 nanoseconds (approximately 1GB/second memory bus bandwidth),

a per-header-rule analysis overhead of 68.54 nanoseconds, a per-byte-per-

body-rule analysis overhead of 0.1356 nanoseconds, and a default set of 600

header rules and 2,528 payload rules. The sensors generate feedback a maxi-

mum of 100 times per second, and only generate feedback if their 64 kilobyte

buffer is more than 30 percent full. The network medium is assumed to be one
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gigabit per second Ethernet with an inter-frame gap of 0.144 microseconds.

Other load balancer decisions, such as when to move or promote a packet

and where to move a packet, use a Mersenne twister random function [25] to

choose between equally probable alternatives. The random function is ini-

tialized with the prime number 7177 in all simulations. The default method

of locating hot spots is to use byte counts. Finally, when a feedback packet is

received, a default of four buckets are affected.

2.5.4 Broken Connections Estimate

As previously discussed, every connection has a distinguishing tuple: its

source and destination IP addresses and TCP/UDP port numbers. When con-

nections end, that tuple may be reused to designate a new connection. To

estimate the number of connection in the trace files, each tuple is recorded. A

TCP FIN packet designates the end of a connection. Thus, when such packets

are encountered, further packets with the same tuple can be considered a new

connection. The number of tuples in the trace files, with the modification for

FIN packets, can be used as a rough estimation of the number of connections

in the trace. This estimation technique can only provide a rough estimate as

it does not take connection timeouts, retransmission, or advanced flow state

into account.

Using this rough estimation technique, analysis of the two trace files in-

dicates that there are 4,493,196 estimated connections in the fast trace and

101,762,453 estimated connections in the slow trace. Extending this tech-

nique, each tracked connection is associated with a sensor that it has been

sent to. When a packet is routed to a different sensor than the one recorded
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for that packet’s tuple, the tuple is changed to reflect the new sensor assign-

ment and the connection is considered to have been broken.
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CHAPTER 3

SYSTEM DETAILS

Now that the general details of the problem’s overall structure and a gen-

eral idea of the approach that SPANIDS takes has been established, the specifics

can be examined.

3.1 The Big Picture

In order to understand the design decisions that have been made and could

have been made, one first must understand the overall design and how it fits

together. Conceptually, SPANIDS looks something like Figure 3.1. The load

balancer unit is where a sensor is chosen for each incoming packet. The load

balancer puts the hardware MAC address of the chosen sensor into the des-

tination MAC address field of the packet’s Ethernet frame and sends it to the

switch. The switch routes the packet to the sensor specified by the destination

MAC address.
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Figure 3.1. The High-Level Architecture of SPANIDS

When a packet is received by the load balancer, a hash of the packet’s

header information is calculated. This hash is used as an index into a rout-

ing table. Each entry in the routing table contains a sensor identifier that is

used to tag the packet before emitting it to the switch as described above.

In the sensors, the NIDS software uses a buffered POSIX RAW socket to re-

ceive packets from the network. The socket is modified to monitor its packet

buffer. The modified socket generates “feedback” packets whenever it deter-

mines that the sensor is being overloaded by the network traffic it is receiving.
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The feedback packets are transmitted to the switch, which routes them to the

load balancer. In the load balancer, receipt of a feedback packet indicates

that one of the sensors is being overloaded and the routing table is modified

to route traffic away from the overloaded sensor.

The first critical area of this design is the hashing mechanism that is the

basis for the routing decisions. A hash must be designed that can operate at

line speed, won’t separate flows, and can extract sufficient entropy from the

incoming traffic to be useful in scattering traffic across the available sensors.

The second critical area of this design is the determination of the cause of

overload. To respond to feedback, the load balancer must locate the traffic

that is responsible for the overload. The third critical area of the design is the

routing table, which is inextricably linked to the load balancer’s capacity to

alleviate overload. This design point must address two issues: what the load

balancer should do to mitigate impending sensor overload and the design of

the routing decision framework to allow the load balancer to respond effec-

tively to feedback packets. The fourth critical area of the design is the sensors’

self monitoring. Sensors must accurately predict that they will drop packets

with enough lead-time that the load balancer can avert or mitigate the over-

load with a minimum of packets lost.

In other words, the critical areas can be summed up as: how should traf-

fic be divided up, if there is a problem what traffic is causing the problem,

how should the problem be resolved, and how does a sensor know if there is a

problem?
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3.2 Hashing

Splitting the network traffic up into chunks in an unintelligent way is easy:

split based on the length of the packet, or a count of the number of 1-bits in

the packet. However, a good parallel NIDS requires a more intelligent hashing

system.

3.2.1 What to Hash

Because a good parallel NIDS should attempt to preserve connections and

should direct all the packets in a single connection to a single sensor for anal-

ysis, good hashing for the purpose of parallel network intrusion detection

should attempt to group packets from the same connection together.

There are many parts of the packet headers that do not vary during a con-

nection. By using this invariant header information as the only input to a hash

function, one can guarantee that all of the packets in a connection will hash

to the same value. A convenient method of defining an arbitrary number of

connection groups, then, is to use a hash function.

At the IP layer, flows are not well defined. However, the IP addresses of the

two network hosts involved in a flow is an invariant part of the tuple of infor-

mation defining a flow for any protocol that uses IP packets. The source and

destination addresses occupy bits 96 through 159 of the IP packet header. Un-

fortunately, the IP address pair space is highly associative and clusters strongly,

as demonstrated in Figure 3.2. Figure 3.2(a) is a graph of the frequency of IP

addresses in the source address field, sorted by address. Figure 3.2(b) is a sim-

ilar graph, but of the destination IP addresses. Both figures are from the fast

trace described in Section 2.5.1.
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Figure 3.2. IP Address Frequency Distributions

To help offset the natural clustering of IP address tuples, more data from

the packet header can and should be used, which requires further protocol-

specific information. Most traffic on the Internet is either TCP/IP or UDP/IP

traffic, so they make good choices of protocols to add to the hash. If new

protocols were to be developed or popularized, this choice would need to be

revisited. The port numbers of the two network hosts involved in the flow

are an invariant part of the tuple of information defining a flow for the TCP

and UDP protocols. These port numbers, in both TCP and UDP, occupy the

first 32 bits of the TCP or UDP header. These bits are convenient, as they are
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in the same place in both TCP/IP and UDP/IP packets, with the exception

of packets including optional IP extension fields which can be accounted for

easily. The distribution of the port number values observed in the fast trace

is more evenly distributed than IP address values, as illustrated in Figure 3.3.

Both graphs are from the same trace as the graphs in Figure 3.2.
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Figure 3.3. TCP/UDP Port Frequency Distributions

Not all traffic is TCP or UDP, or even IP, in nature. Knowledge of additional

protocols can be added to the hash function as necessary, though there is a
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limit to how much additional protocol knowledge can be added to the hash

function without losing speed. Additional bit ranges that could currently be

added to the hash functions to gather still more entropy without needing to

understand more protocols, are the Ethernet frame type (the 21st and 22nd

bytes of the 22 byte Ethernet header) and the packet type (ICMP or IGMP, for

example). However, the usefulness of additional data — particularly data that

only applies to rarer packet types — is debatable. Most non-TCP/UDP proto-

cols, like ARP, do not organize into connections and do not apply to all net-

works. How much additional complexity is acceptable depends on the speed

of the implementation and the diversity of the traffic.

3.2.2 How to Hash

The combination of the IP source and destination addresses and the TCP/UDP

source and destination port numbers provides enough entropy for several dif-

ferent and serviceable hashes, as demonstrated by the value distributions in

Figure 3.4. Normally, the hashes are computed in parallel. Because at least

one of the hash values is needed very early in the routing mechanism, there

is little time for computation that requires multiple cycles. However, not all

hashes are needed immediately when routing a packet. When a packet re-

quires additional levels of hashing to determine its destination, discovering

that additional levels of hashing are needed takes time. This time can be used

to provide complex hash functions additional cycles to compute values if nec-

essary.
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Figure 3.4. Value Distributions for Several Hash Functions
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3.2.3 Bucket Power

Because network traffic density is most likely unevenly spread across the

theoretical tuple-space of IP addresses and TCP/UDP port numbers, packets

will be unevenly spread across the set of possible hash values. One benefit of

using a lookup table to implement the mapping of hash values to sensor ad-

dresses rather than a set of ranges or a modulus operation, is that the lookup

table can be modified in order to change the balance of packet load per sen-

sor generated by the mapping. If there are more hash values than there are

sensors, it is possible to shift small amounts of load from sensor to sensor to

adapt to changes in network load. Larger ratios of hash values to sensors allow

such adaptation to be very tailored and fine-grained. However, as the ratio of

buckets to sensors increases, each hash value represents a smaller section of

the tuple-space. When each hash bucket represents a small section of tuple-

space, the effectiveness of a single change to the lookup table becomes corre-

spondingly low.

The system can be tailored to a specific ratio, making a lookup table of a

specific size and a specific number of sensors a requirement. Such tailoring

eliminates the system’s ability to scale. Adding more sensors to handle addi-

tional traffic will throw off the ratio and make the system less able to adapt

to traffic load variations. In order to maintain an approximate level of effec-

tiveness for any change to the lookup table, it is desirable to maintain an ap-

proximate ratio of lookup table entries per sensor by changing the number of

lookup table entries in accordance with the number of sensors.

The prototype SPANIDS platform has a maximum routing table array size

of 4,096 entries. This is adjusted down to 512 entries for less than 9 sensors,
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1,024 entries for less than 17 sensors, 2,048 entries for less than 33 sensors,

and 4,096 for more than 32 sensors — maintaining between 64 and 124 entries

per sensor in most cases.

There has been some research recently into tailored hash functions that

for a given population of input data are guaranteed to produce uniformly dis-

tributed output. While this may be possible for any given trace file or set of

trace files, the nature of network traffic is highly dynamic and is therefore re-

sistant to such static analysis. Additionally, when the NIDS is attacked, any

hash function it uses can be manipulated. Only a dynamically re-balancing

hash function would be able to handle the behavior of network traffic. Such

a function, however, would not only be difficult to design but would also be

computationally expensive and impractical for line-speed traffic routing.

3.2.4 Hashing Effectiveness

In the prototype SPANIDS, because the available memory in the FPGA is

large enough to contain 4,096 routing buckets, only 12 bits are required to

reference them. Thus each hash function used in the system generates a 12-

bit hash value from 96 bits of input — 32 bits of IP source address, 32 bits of IP

destination address, 16 bits of TCP/UDP source port, and 16 bits of TCP/UDP

destination port. The 12-bit value is then scaled as necessary depending on

the number of sensors.

The first two hashes used in SPANIDS are extremely simple XOR functions

that combine sets of every twelfth bit of the input, starting from different bits.

The first function’s bit sets start at bits 0 and 1, and the second function’s start

at bits 2 and 4 — the selection of 2 and 4 are important, as they prevent the
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second hash function from being a shifted version of the first hash function.

Thus, the first of the twelve bits of output of the first hash function is the XOR

of bits 0, 1, 12, 13, 24, 25, and so forth from the 96 input bits. The second of

the twelve bits of output of the second hash function is the XOR of bits 1, 2, 13,

14, 25, 26, and so on from the 96 input bits. This produces a value distribution

from the fast trace represented in Figure 3.4(a). The first bit of the twelve bits

of output of the second hash function is an XOR of bits 2, 4, 14, 16, 26, 28 and

so on from the 96 bits of input. The second bit of the twelve bits of output of

the second hash function is an XOR of bits 3, 5, 15, 17, 27, 29 and so on from

the 96 bits of input. This produces a value distribution from the fast trace

represented in Figure 3.4(b).

The second two hashes used in SPANIDS use slightly more complex logic.

Instead of taking a straightforward XOR of the 96 bits of input data, certain

transformations are used on the input data first. In the third hash, for ex-

ample, the 16-bit TCP/UDP port numbers are added together before being

combined with the unaltered IP addresses using an XOR, similar to the first

two hash functions. The value distribution for this hash on the packets in the

fast trace is illustrated in Figure 3.4(c). The fourth hash function, rather than

adding the TCP/UDP port numbers, adds the two 32-bit IP addresses together

and then combines the sum with the unaltered TCP/UDP port numbers using

an XOR similar to the first two hash functions. The value distribution for this

hash on the packets in the fast trace is illustrated in Figure 3.4(d).

The hash functions discussed here were developed with the goals of be-

ing simple and easy to compute in the prototype SPANIDS system in addition

to relatively evenly distributing traffic and having different collisions. Other
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hash functions can be used in their place, provided they meet the same re-

quirements. The distributions illustrated in Figure 3.4 are specific to the fast

trace.

3.3 Detecting Overload

Unlike load balancers in other environments such as web servers, distributed

systems, or clusters, a NIDS load balancer is not concerned with achieving the

best possible distribution of work across all nodes. Since the NIDS is not in

the active communication path, improving its throughput beyond the offered

network load does not result in performance improvements. It is sufficient to

ensure that no sensor’s load exceeds its capacity.

Hashing by itself, however, is insufficient. The best hashing spreads the

logical space of the network — all possible tuples of the data hashed — smoothly

across a smaller set of sensors. Even a perfect hash cannot take into account

the volume of traffic that may be funneled to a single hash value or group

of hash values. Thus, while a good hashing algorithm evenly distributes the

theoretical set of packets, it does not necessarily evenly distribute the set of

packets received. Unless the incoming traffic is evenly spread over the logical

space of the network, a hash function alone cannot guarantee balanced load.

Something more is necessary.

3.3.1 Is There A Problem?

There are several methods available to the load balancer for determining

if there is a problem with the current distribution of network traffic. If all sen-

sors are uniform in capacity and if all packets impose identical loads on the
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sensors they are sent to, it is possible to simply count how many packets or

how many bytes are sent to each sensor. Then when one sensor begins to

receive many more packets than the other sensors, it can reasonably be pre-

sumed that the sensor in question is being overloaded. The assumptions re-

quired to use a packet or byte counting technique, however, cannot be made.

The first assumption may not be valid. While in some circumstances it

may be possible and even convenient to ensure that all sensors are identical,

in many circumstances it is certainly not. Any pure load-balancer-based es-

timation system — whether it uses packet counts, byte counts, or some other

estimation within the load balancer — must presume that all of the sensors

are equally capable, which may not be the case. Each network packet im-

poses a certain load on the sensor it is sent to. This cost not only depends

on the fixed interrupt and system call overhead, but also on the size of the

packet and the actual payload. This makes it difficult for the load balancer

to accurately determine sensor load based solely on the number of packets or

bytes forwarded. If a sensor is being inundated by large packets, a pure packet

count may be insufficient to accurately gauge the load placed on that sensor.

On the other hand, while this is not modeled in this simulation, packets may

contain many partial-pattern matches and thus take more time to precisely

analyze, making a pure byte count insufficient as well.

The solution to these challenges is to get the sensors more actively in-

volved in routing decisions. A simple method is to require sensors to inform

the load balancer when they are receiving too many packets and may overload

soon. Thus, the load balancer does not have to guess whether or not a given

sensor is near overload, but instead has a much more concrete idea of exactly
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how close to dropping packets each sensor is. The key to making this simple

method successful is to be able to detect a trend of packets that will lead to

dropped packets with sufficient advance notice that the sensor has time to

notify the load balancer and the load balancer has time to compensate.

3.3.2 Locate the Problem

Once a sensor has reported imminent overload by generating a feedback

packet and sending it to the load balancer, the load balancer must do some-

thing about it. A critical design decision for the load balancer is the heuris-

tic used to determine which hash buckets are responsible for the problem

that caused a sensor to generate a feedback packet. There are several viable

methods.

3.3.2.1 Random

First among the methods evaluated was to simply choose random hash

bucket values. This method is entirely unintuitive, but provides a good base-

line for comparison to other methods. Random approaches are easy to im-

plement and make the system’s behavior difficult for attackers to predict.

3.3.2.2 Packet Counts

The second method is based on the assumption that of the buckets be-

longing to the sensor that sent the feedback, those that have routed the most

packets are responsible for the overload. As discussed previously, counting

packets is a flawed way to compare bucket “busyness” between several sen-

sors because it makes assumptions that may not be true. Within the context
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of a single sensor, however, packet counts are a simple way to determine the

relative busyness of hash buckets. To implement this technique, each entry in

the routing table is associated with a record of how many packets have been

routed using that routing table entry. This record is reset every second. Gen-

erating a list of all hash values that belong to a given sensor every time a feed-

back packet is received would be very memory-intensive and may take too

long. Instead, when a packet is routed, a sorted list of the most active hash

values for a given sensor, or “hotlist,” is updated.

3.3.2.3 Byte Counts

The third method for determining which hash values are most likely caus-

ing overload is similar to the previous method. The difference is that instead

of using packet counts as the primary busyness metric, byte counts are used.

The assumption of this method is that the time required to analyze each packet

has more to do with overloading the sensor than the overhead of receiving

each packet. The difference between this method and the previous method

may only reflect the specific packet drain speed of the simulated sensors. To

get a realistic picture of the difference between these two methods, more ac-

curate drain speeds than are used in this simulation would need to be ob-

tained.

3.3.2.4 Feedback Frequency

The fourth method for determining which hash values are most likely caus-

ing overload is based on finding hash values that have been reassigned from

sensor to sensor. The idea is that if a hash bucket is frequently moved, it is
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likely the cause of the problem. This method will identify such a bucket even

if it has not yet received enough packets or bytes since being reset to appear

very busy. The way this method works is that each entry in the routing ta-

ble is associated with a record of feedback packets, much like the records in

the previous two methods. When a feedback packet is received, the event is

recorded in the log of all hash buckets that currently target the sensor that sent

the feedback. This record is reset every second. Thus, even if a hash bucket

is re-targeted to another sensor, its history of being assigned to sensors that

have generated feedback packets is preserved.

3.3.2.5 Simulation Results

To compare the effectiveness of these methods, they were each simulated

with both available traces using the almost entirely random default settings

described in Section 2.5.3. Figure 3.5 is a graph of their respective packet-

drop rates, normalized to the random mechanism and plotted on a base ten

logarithmic scale. Of the 35,992,126 packets in the fast trace, using random

buckets causes 284,109 packets to be dropped (0.789%), while basing the de-

cision on feedback frequency causes 1,572,070 to be dropped (4.37%). Deter-

mining relative bucket hotness based on packets causes only 2,280 packets to

be dropped (0.00485%), and using bytes as a gauge allows only 1,745 packets

to be dropped (0.00633%). Results were very similar for the slow trace, where

the random method had a packet loss rate of 2.04%, the feedback method

had a packet loss rate of 9.51%, the packet-counting method had a loss rate of

0.0231%, and the byte-counting method had a loss rate of 0.0234%. There ap-

pears to be an extremely small difference between packet-counting and byte-
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counting, however the trend is clear that using either packets or bytes is better

than using either the random or feedback mechanisms. Using feedback fre-

quency turns out to be a terrible gauge, doing much worse than a random

selection. This is likely because there is insufficient feedback to make a good

decision most of the time.
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48



3.3.3 Estimate the Size of the Problem

A second critical parameter in the load balancer design is the number of

hash buckets that are affected by the load balancer’s response to a feedback

packet. Affecting too few buckets redirects an insufficient amount of traffic

away from the overloaded sensor and thus does not reduce the sensor load

sufficiently to avoid packet loss. Although the overloaded sensor can issue ad-

ditional flow control messages, the sensor’s packet buffer may overflow by the

time the load balancer has reacted. On the other hand, moving too much traf-

fic can overload the new sensor that receives it, and disrupts flow continuity

unnecessarily. Hence, determining the correct size of the problem for remedi-

ation is important to minimize packet loss. Note that this aspect is somewhat

less critical when promoting hash buckets instead of moving them, since pro-

moting too many buckets does not negatively impact packet loss rates, but

does impact flow disruption.

Figure 3.6 shows the packet loss when moving or promoting different num-

bers of hash buckets. These numbers are from a simulation with the default

settings as described in Section 2.5.3 but with different numbers of hash buck-

ets affected by remediation techniques. Results are normalized to the packet

loss when adjusting one hash bucket at a time. A simple conclusion to draw

from Figure 3.6 is that the more buckets the better: adjusting more buckets re-

sults in fewer packets lost, though there are clearly diminishing returns from

additional adjustments. When hash buckets are adjusted, however, connec-

tions are broken. To get an idea of how many connections are broken when

buckets are adjusted, a simple estimation technique can be used. Using the

technique described in Section 2.5.4, the estimated number of broken con-
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nections when affecting different numbers of hash buckets is illustrated in

Figure 3.7, normalized to the number of broken connections when adjusting

one hash bucket at a time.
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There is obviously a tradeoff to minimizing packet loss and minimizing the

number of connections broken. To explore this tradeoff, Figure 3.8 shows the

weighted sum of packet loss and broken connections, normalized to the per-

formance of a single hash bucket. In this graph, smaller numbers are better.

Two overall performance measures are shown for each trace. The first metric

gives packet loss a weight of 100 compared to a connection break, while the
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second metric assigns a weight of 1,000 to a packet loss. The latter approach

optimizes for packet loss at the expense of increased load balancer activity

and more connections broken. This may for instance be desirable if the NIDS

sensors employ only basic stateful analysis, and reassigning a network flow to

a sensor has minimal impact on detection accuracy.
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The graph shows how the tradeoff changes as the significance of packet

loss changes. For a packet loss weight of 100, adjusting only one or two hash

buckets provides optimal performance. On the other hand, when minimiz-

ing packet loss is considered critical, adjusting additional buckets further im-

proves performance, particularly with the slow trace. These results suggest

that the overall load balancer performance is indeed a tradeoff between packet

loss and flow disruption. By adjusting the number of hash buckets that are af-

fected when a feedback packet is received, it is possible to trade one measure

for the other and thus optimize performance based on the needs of a particu-

lar installation.

3.4 Mitigating Overload

Once a problem has been reported to the load balancer and the problem-

causing traffic has been discovered or decided upon, the next task for the load

balancer is to address the problem. Generally, this is accomplished by di-

recting network traffic away from the overloaded sensor and onto other less-

loaded sensors.

3.4.1 Structure of Routing Table

The design of the routing table must be both flexible and fast. The rout-

ing table must necessarily be altered quickly in response to feedback, and

the routing algorithm for every packet must be able to operate at line speed.

Therefore a hash-based lookup table is a natural design. In such a lookup

table, the routing destinations for any of the hash values represented can be

changed with very little interaction between the feedback-handling mecha-
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nism and the routing mechanism.

3.4.1.1 What to Do With the Hash

Once an identifier for a packet group — a hash value — has been calculated

for a packet, a destination sensor needs to be chosen for the packet. The hash

algorithm will produce hash values within a range. In the SPANIDS prototype

and the simulator, this range is between 0 and 4,096. The lookup table can be

used as a one-to-one mapping function to map each hash value to a sensor.

The most simple method for associating hash values with sensor addresses

is a lookup table like the one illustrated in Figure 3.9(a). To route a packet,

the hash of the packet, h, must be computed based on the desired parts of

the packet. The h’th entry in the lookup table will contain the address of the

sensor the packet should be sent to. The entry in the array may contain more

information than simply a sensor identifier, of course.
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Figure 3.9. Simple Lookup Table

3.4.1.2 Splitting Hot Spots

Small amounts of traffic can be redirected away from overloaded sensors

and toward another less loaded sensors by altering the lookup table. Some

of the hash values that are associated with the overloaded sensor can be as-

sociated with less loaded sensors instead. This technique, illustrated in Fig-

ure 3.9(b), is referred to in this thesis as “moving” the hash buckets. This sim-

ple technique has the possible drawback of route “thrashing,” where more

traffic than a single sensor can handle is associated with a single hash value.

Whatever sensor that hash value is assigned to will quickly become overloaded

and will send feedback packets to the load balancer. These feedback packets

will cause the high-traffic hash value to be reassigned again, and the cycle will

repeat. This problem is a “narrow hot spot.”
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3.4.1.3 Narrow Hot Spots

Narrow hot spots may be detected once they have formed in any number

of ways — the options are identical to the techniques outlined in Section 3.3.2.

They may also be avoided entirely by preemptively addressing potential hot

spots. Once a narrow hot spot or a potential narrow hot spot has been identi-

fied, the next question to answer is what to do about it. There are two meth-

ods considered by the SPANIDS load balancer. Namely, using a different hash

function to split apart hash collisions, and using packet-level round-robin dis-

tribution.

3.4.1.4 Hierarchical Hashes

One way to redistribute the traffic that is mapped to a certain hash value is

to hash the traffic again with a different hash algorithm in hopes that the prob-

lem is an artifact of hash collisions. For speed purposes, this likely means that

multiple hash values should be computed at the same time, even if they will

not all be used. The fallback hash values should be from hash functions de-

signed not to have the same key-value collisions in order to avoid re-creating

the narrow hot spot. The number of hash algorithms used is implementation

dependent, however it should be noted that additional hash algorithms add

complexity and time to the processing of every packet.

Several different routing tables can be used, one per hash function. Then

when a narrow hot spot or potential narrow hot spot has been identified, the

corresponding hash bucket can be marked so that the destination is not a

sensor, but rather a different routing table. Therefore, overload avoidance

mechanisms should consider the hash buckets from all of the different rout-
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ing tables. A logical layout of an example two-layer scheme is presented in

Figure 3.10. This can easily be expanded to more than two levels. As dis-

cussed in Section 2.2.2.4, packet-level round-robin distribution must be the

last resort when flow-based distribution fails to sufficiently separate the high-

bandwidth traffic that is overloading sensors.

Redirecting traffic may, however, cause subsequent parts of the flows in

the affected traffic to be sent to different sensors than before the redirection.

This suggests that when considering how frequently and how preemptively to

use traffic redirection to correct load imbalances, there is a tradeoff between

how many packets are not lost that would be lost without such adaptation and

how many flows the adaptive behavior breaks across several sensors.
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3.4.2 Move or Promote

The next design decision to be considered for the scalable load balancer is

the heuristic used to identify narrow hot spots and thereby determine whether

problem-causing hash buckets should be moved to another sensor or pro-

moted to the next level of hashing. Neither scheme has a clear advantage over

the other in terms of minimizing packet loss. However, promotion is restricted

by the number of hash levels implemented in the load balancer whereas there
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is no limitation on how many buckets are moved, or how often. There are

several techniques that can be used to make this decision.

Static “Always Move” and “Always Promote” schemes avoid the decision of

whether to move or promote hash buckets and simply apply only one of the

two flow control response mechanisms.

3.4.2.1 Random

A random decision is nearly as simple as the Always Move and Always Pro-

mote heuristics. This method simply probabilistically chooses to either pro-

mote or move the buckets with a 50 percent likelihood for either alternative

3.4.2.2 Buffer Fullness

This method bases the decision whether to move or promote on the known

buffer fullness of the sensor the feedback originated from. When a sensor gen-

erates a feedback packet, it can include in the body of that packet a number

representing how full the sensor’s packet buffer is as a percentage. In these

simulations, sensors generate feedback packets when they receive a new packet

and their packet buffer is more than 30 percent full. The load balancer can

use a slightly higher buffer use percentage as an arbitrary line to determine

whether to move or promote the problem-causing hash buckets. For the pur-

poses of this simulation, if the buffer is more than 32.5 percent full, the load

balancer decides to promote the hash buckets; otherwise the hash buckets

are moved. 32.5 percent is an arbitrary line that seemed to be successful in

simulation, though any cutoff can be used.

The inverse of this logic is also simulated — promoting buckets when the
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sensor’s buffer is less than 32.5 percent full and moving the buckets otherwise

— in order to verify that the logic is correct.

3.4.2.3 Feedback Frequency and Weighted Feedback Frequency

Another useful technique for determining whether to move or promote

hash buckets is to base the decision on the frequency of feedback packets.

Like the method discussed for locating problem hash buckets, every hash

bucket is associated with its own feedback record. Each time a feedback is

received it is recorded in every bucket targeting the sensor that generated the

feedback. The idea behind this technique is that while feedback frequency has

been demonstrated to be a poor method of locating frequently used buckets

in general, it may be a good way to identify extremely frequently used buckets

that have been moved many times. The end result of this technique is that

the majority of hash buckets would be moved to other sensors while partic-

ular buckets that have a record of being associated with feedback-generating

sensors are promoted.

The record of feedback packets is reset every second. It may, however, be

desirable to maintain some impact from history. If a decision must be made

immediately after the records have been reset, all buckets appear equal: they

have received no feedback packets. The feedback record can be weighted and

history can be maintained by dividing the feedback count in half every second

rather than setting it to zero.

60



3.4.2.4 Intensity and Weighted Intensity

An intuitive mechanism for deciding whether to move or promote a problem-

causing hash bucket is to compare the rate of traffic assigned to the problem-

causing buckets with the average rate of traffic of all buckets currently as-

sociated with the overloaded sensor. Buckets that exceed a specific relative

threshold are subject to promotion instead of reassignment.

Figure 3.11 demonstrates this heuristic approach. Both graphs show an ex-

ample sorted histogram of bucket load for a given sensor. The dashed line cor-

responds to the average load. The histogram in subfigure a shows a histogram

with only a small variation in bucket loads. In this case it is likely sufficient

to move some of the hash buckets to another sensor to address this sensor’s

overloading problem. The histogram in subfigure b exhibits a larger variation,

suggesting that the network traffic associated with those few intense buckets

may be primarily responsible for overloading that sensor. If that is the case,

these buckets would likely overload any other sensor as well. In this scenario,

the load balancer promotes the top hash buckets to the next level of hashing

in an attempt to split the associated network traffic apart.
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Figure 3.11. Using Intensity to Choose between Moving and
Promotion

Note that this heuristic only approximates the ideal decision. First, the

load balancer estimates the packet load associated with each hash bucket

based on packet rates. Second, the decision whether to move or promote does

not consider the shape of the histogram, but only compares the highest inten-

sity buckets with the average load. On the other hand, this approach does not

require a costly analysis of all hash buckets like a derivative of a sorted his-

togram would, nor does it rely on detailed and possibly outdated feedback

information from the sensors. Finally, this heuristic requires little storage on

the load balancer as only a small number of high-intensity hash buckets need

to be tracked for each sensor.

62



3.4.2.5 Simulation Results

The heuristics discussed above were simulated with the two traces and

the simulator’s default settings. Figure 3.12 summarizes the load balancer’s

performance in terms of packet loss for both traces using these heuristics

on a base ten logarithmic scale. The packet loss is normalized to the ran-

dom method to enable a comparison between the two traces. Interestingly,

the random method hits a median directly between the methods that drop

large numbers of packets and the methods that drop very few packets. Also of

interest, the Inverse Buffer Fullness technique outperforms the Buffer Full-

ness technique by a large margin, possibly indicating that the information

the techniques use is frequently out of date. The lowest drop rates in both

traces come from the Always Promote, Inverse Buffer Fullness, Average Inten-

sity, and Weighted Average Intensity heuristics.
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Figure 3.12. Move or Promote: Normalized Packet Loss

It is interesting, then, to compare the packet loss rates to the negative side-

effects of packet loss avoidance represented in Figure 3.13. While the Always

Promote, Inverse Buffer Fullness, Average Intensity, and Weighted Average In-

tensity methods have low drop rates, their broken connection counts are rel-

atively high. Again, the random technique sits between the extremes. The

graphs together clearly indicate that to avoid packet loss, connections must
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be broken. However, to choose a good technique requires deeper analysis.
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Figure 3.13. Move or Promote: Normalized Connections Broken

To explore the tradeoff between packet loss and broken connections, Fig-

ure 3.14 shows the weighted sum of packet loss and broken connections, nor-

malized to the random method and plotted on a base ten logarithmic scale.

This is similar to the previous tradeoff graph. Smaller bars are better. Inter-
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estingly, when packet loss is weighted heavily the random heuristic shows the

best tradeoff for the slow trace and a relatively good tradeoff for the fast trace.
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Figure 3.14. Move or Promote: Performance Tradeoff

Another metric may be useful for comparing dissimilar techniques. The

success of a technique can be viewed as the number of packets that were not

dropped that otherwise would have been. Specifically, the number of pack-
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ets dropped if no adjustments are made to the original hash-based distribu-

tion can be used as a baseline and any fewer packets dropped when using a

technique can be considered the number of packets saved. The drawbacks of

a technique can be viewed as the number of connections that were broken.

Thus, the number of packets not dropped per connection broken provides

a measure of the effectiveness of the technique. The effectiveness of these

heuristics is illustrated in Figure 3.15. Larger bars are better.
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Figure 3.15. Move or Promote: Effectiveness
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What is interesting about this graph is that despite the relatively high num-

bers of packets lost, the benefit of a very low number of connections broken

outweighs the packets lost for the Always Move and feedback-based heuris-

tics. Due to the very low number of connections broken, the feedback-based

heuristics seem to have the best overall tradeoff. Even more interesting is that

the feedback-based and Always Move heuristics are much more effective with

the slow trace than the fast trace. This may be a result of less diverse traffic or

longer connections in the slow trace, which would make the history of feed-

back packets more useful. In a faster trace, connections and load shift more

quickly and the small delay between when the sensor generates the feedback

packet and when the router receives it may make the information too old and

thus less useful.

3.4.3 Where to Move

Once the decision has been made to move one or several hash buckets

from one sensor to another, the problem becomes which sensor to move them

to. Ideally, they should be moved to the least-busy sensor or sensors, spread

according to how much free capacity those sensors have. However, the load

balancer cannot know with certainty how much spare capacity a sensor has.

To estimate the available capacity, the methods discussed previously for gaug-

ing sensor load may be employed. Rather than attempting to discover the

most heavily loaded sensors or hash buckets, now the goal is to find the least

loaded.
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3.4.3.1 Random

As in previous cases, a probabilistic heuristic can be an effective tool. In

other words: select a sensor at random. This technique is highly unintelli-

gent, in the sense that it makes no pretense at gauging sensor load. It is very

possible that the traffic may be re-assigned to another sensor that is operating

at or near its capacity and cannot accept additional load. However, a random

reassignment is far more difficult for even a careful attacker to manipulate.

3.4.3.2 Packet Counts

Just as packet counting can be used as a load determination for deciding

when sensors are becoming overloaded and need load moved away, it can

also be used to estimate which sensor is the least busy and could accept more

load. This method has the same logical problems in this case as in previously

discussed circumstances. The load balancer must presume that the sensors

have identical capacity and that the number of packets is an accurate reflec-

tion of the load the packets are placing on the sensor. As before the packet

records are reset every second. It is possible that a sense of the packet’s his-

torical record should be maintained, so a weighting mechanism as previously

discussed is also simulated.

3.4.3.3 Feedback Frequency

Ideally, sensors can inform the load balancer of their precise capacity to

accept additional traffic. To ensure such information is up to date, a two-way

auction for extra traffic would need to be performed for every bucket reassign-

ment. Such an auction would slow the load balancer’s response to feedback
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requests. Therefore the load balancer must base the decision on what sensor

information it already has, namely the feedback that they have sent. Directing

the traffic to the sensor that has sent feedback to report overload the least is an

easy method for locating a sensor with available capacity based upon sensor-

provided data. Counts of how many feedback packets a sensor has generated

may suffer from the same problems counts of how many packets are routed

to each sensor do as detailed above. Thus, a counter weighted in the same

manner is also simulated.

3.4.3.4 Simulation Results

The heuristics discussed were simulated using both traces and the “av-

erage” technique for the decision to move or promote buckets. Figure 3.16

summarizes load balancer performance in terms of packet loss. Packet loss

is normalized to the random method to enable a comparison between the

two traces. Interestingly, random is one of the more successful methods. Us-

ing packet counts and weighted packet counts produces results similar to the

random method and the two techniques are reasonably consistent between

the two traces. The feedback-based methods appear comparable to the ran-

dom heuristic when used for the fast trace, but have surprisingly high packet

loss rates for the slow trace.
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Figure 3.16. Move Target Method: Normalized Packet Loss

Looking at the methods in terms of connection breaks, illustrated in Fig-

ure 3.17, is also interesting. The feedback-based methods have both more

broken connections and greater packet loss than the random heuristic. At the

same time, the packet-based methods are very similar to the random method,

though with slightly fewer connection breaks, and are rather consistent be-

tween the two traces.
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Figure 3.17. Move Target Method: Normalized Connections Broken

The effectiveness metric discussed previously — the ratio of packets saved

to connections broken — is illustrated in Figure 3.18. The ratio is normal-

ized to the random technique to allow for comparison between the traces.

This graph makes it clear that random is an excellent technique, though the

weighted packet heuristic has a slightly better ratio of packets saved to con-

nections broken.
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Figure 3.18. Move Target Method: Effectiveness

3.4.4 Coalescing

The final issue to consider when dealing with narrow hot spots is how to

revert to the way things were originally once the hot spot has cooled down.

Multiple levels of hashing can be very useful for dealing with NDoS attacks.

However, unless the additional layers are temporary and are collapsed as the

hot spots cool, eventually all traffic will be filtered through all hashing layers.
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Thus, the traffic will be distributed solely according to the last hash layer —

or ultimately, the round-robin fall back — which defeats the entire purpose of

using multiple hashes.

One possible way to determine when to collapse, or “demote,” the hashing

layers is similar to the way the hashing layers are expanded: based on traffic.

Packet counts and collective feedback counts can be useful for this purpose

because they can be associated with specific hash values in specific routing

tables and are not restricted to a purely per-sensor use.

A somewhat simpler method for coalescing, and the one the SPANIDS project

uses, is a timeout on bucket promotion. When a hash value receives enough

traffic to promote it to another level of hashing, it receives a counter value that

is decremented every second. When the counter value reaches zero, the hash

value’s promotion is re-evaluated. If the bucket would be promoted again it

receives a new timer value, otherwise it is demoted. When using such timers,

the timer should be a random value in order to avoid making assumptions

about the sensor and the traffic patterns. A random timer also decreases the

predictability of the system.

3.5 Generating Feedback

3.5.1 Being Agnostic

The last of the four major critical areas of the design of a scalable parallel

NIDS platform is located in the sensors. This is a difficult area in which to dic-

tate design because one of the goals of SPANIDS is to be as detector agnostic

as possible. That is, the technique and implementation of the traffic analy-

sis software used on the nodes should not matter to the load balancer and
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preexisting software should work without modification. On the other hand,

SPANIDS is addressing a capacity problem and must rely on the cooperation

of the sensors to give the load balancer some knowledge of the capacity the

sensor nodes possess. To that end, a compromise can be reached. Each sen-

sor has a responsibility to the rest of the system: to generate feedback packets

when it is nearing overload. This responsibility can be handled without the

knowledge of the traffic analysis software running on the node. NIDS software

typically uses a RAW network socket to receive packets from the network. In

the case of the prototype system, the sensor nodes are all Linux systems and

the self-monitoring and participation in the SPANIDS platform is handled by

a custom kernel module implementing the RAW socket interface. This kernel

module monitors the RAW socket’s buffer, and can generate feedback pack-

ets as it deems necessary. This process is invisible to the NIDS traffic analysis

software on the Linux hosts.

3.5.2 Techniques

3.5.2.1 Fullness Threshold

There are many techniques that can be employed to decide when to send

a feedback packet. The simplest method is a threshold. Every time a packet

arrives, the sensor compares the cumulative size of packets in the buffer with

the full size of the buffer. An arbitrary threshold of 30 percent was chosen,

such that if the buffer is more than 30% full a feedback packet is sent to the

load balancer to report that the sensor is becoming overloaded.
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3.5.2.2 Fullness Threshold with a Rate Limit

After a sensor sends a feedback packet to the load balancer and the load

balancer compensates, the sensor will continue to receive new packets to pro-

cess. However, the sensor’s buffer is not instantly emptied, and may still be

over the threshold as these new packets arrive, and may cause additional feed-

back packets to be sent to the load balancer even though appropriate correc-

tive action has already been taken by the load balancer. Thus there is a ten-

dency in the system to overcompensate. Every time a sensor’s buffer exceeds

its threshold, it has a tendency to send several feedback packets to the load

balancer in quick succession while the system re-stabilizes.

A simple fix to the overcompensation problem is to limit the rate feedback

packets may be generated. While it is desirable to allow the sensor to continue

to generate feedback packets to indicate to the load balancer that the problem

has not yet been resolved, the load balancer’s corrective action must be given

time to take effect. Time is unfortunately in limited supply, as the sensor’s

packet buffer is finite. Since the feedback threshold is 30% there is some time

available to see if the corrective action has had a sufficient impact, but not

much.

3.5.2.3 Packet Arrival Rate Threshold

It is possible for the buffer to fill to approximately 30% (or any other ar-

bitrary threshold) and remain there as packets are removed at approximately

the same rate as new packets arrive. In that case, being above the 30 percent

threshold does not necessarily indicate that the sensor is in danger of losing

packets. Sending feedback to the load balancer in such a situation may dis-
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rupt flows unnecessarily. This is true of any arbitrary threshold.

A more intelligent method may be to generate a feedback packet only when

the rate of change in the buffer use breaches a certain threshold. This pre-

sumes that slowly increasing buffer use is unlikely to be a problem. This

technique can be combined with the previous technique, allowing the packet

buffer to slowly fill to as much as 60 percent full without complaint, while still

generating feedback even below that 60 percent threshold if the buffer starts

to fill too quickly.

3.5.2.4 Predicting the Future

Even a slowly filling buffer will eventually overflow. Additionally, allow-

ing the buffer to get too full before generating feedback means that the sen-

sor may not be able to provide the load balancer with sufficient notice before

dropping packets. Finally, a quick jump in buffer fullness when the buffer is

nearly empty may not indicate that the sensor is in danger of losing packets

and generating feedback may disrupt flows unnecessarily.

A comprehensive mechanism must predict the future. Rather than rely on

an arbitrary threshold, the rate the buffer is filling can be used to predict how

much time the sensor has before packets are lost. If the estimated amount of

time before the sensor’s buffer becomes full is lower than a given threshold, a

feedback packet is sent to the load balancer. This allows slowly filling buffers

to fill without concern, and quickly filling buffers that are mostly empty to

cause no alarm, as long as there appears to be no danger of imminent packet

loss. In the simulation, predictions are made every hundredth of a second

(10 milliseconds), and estimate buffer use a specific multiple of that length of
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time into the future.

3.5.2.5 Simulation Results

The packet loss associated with several timeout values, rate thresholds,

and predictive estimates are compared in Figure 3.19. These feedback mech-

anisms are compared by connections broken in Figure 3.20. Both graphs are

normalized to the Always Report 30% threshold technique described above.

The packet loss is plotted on a base ten logarithmic scale. It can be seen that

any limitation on the speed that feedback packets are generated causes more

packets to be lost than the Always Report technique. However, the Always

Report technique breaks more connections than any of the techniques that

limit feedback generation speed. It is interesting to note the large increase in

connections broken and large decrease in packets dropped between the rate

limit of one feedback packet per second and ten feedback packets per second.

This may indicate that the sensors are frequently overloaded in under a tenth

of a second. It is also interesting to note that the predictive feedback gener-

ator must predict a tenth of a second into the future in order to get a packet

loss rate lower than the Always Report technique. However, if the predictive

feedback generator predicts more than seven hundredths of a second into the

future, it breaks more connections than the Always Report technique. Most

likely, this is a result of incorrect predictions resulting in more feedback pack-

ets generated than necessary. It may be tempting to look favorably upon the

surprisingly low level of broken connections caused by the percent change

threshold techniques. Deeper analysis of the simulation results reveals that

this is due to the extremely high packet losses — large numbers of connec-
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tions were never received by any sensor, and thus could not be broken across

several sensors.
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Figure 3.19. Feedback: Normalized Packet Loss
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Figure 3.20. Feedback: Normalized Connections Broken

The effectiveness metric described in previous sections is useful for com-

paring these techniques further. The effectiveness of limiting the rate that

feedback packets can be generated is presented in Figure 3.21. The effec-

tiveness of using the current packet rate to predict the future is presented in

Figure 3.22 and the same metric when generating feedback packets based on

the speed the buffer fills is presented in Figure 3.23. The data point for limit-
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ing feedback to one feedback packet per second when using the slow trace is

missing from Figure 3.21 — the data point (-4.82) is sufficiently negative that

to display it would compress the detail out of the rest of the graph.
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Figure 3.21. Feedback: Threshold Rate Limit: Effectiveness
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Figure 3.22. Feedback: Prediction: Effectiveness
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Figure 3.23. Feedback: Rate Threshold: Effectiveness

Predictions about the very near future, as displayed in Figure 3.22, are very

effective at preventing unnecessary feedback packets and thus unnecessarily

broken connections. It is interesting to note that the most effective rate limit

for rate-limited feedback packet generation is at approximately 10 or 25 feed-

back packets per second for the slow trace, further suggesting that sensors

are overloaded most frequently in approximately a tenth of a second. The
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difference between the two traces in effectiveness when using the predictive

technique is particularly striking. The difference suggests that the speed of

the fast trace overwhelms sensors more quickly than the sensor can report

it, making prediction and early detection more much more useful. Perhaps

the most intriguing result is that in several cases, particularly the cases that

use the packet buffer filling rate, the effectiveness metric is negative. Each

instance of a negative effectiveness metric is a result of more packets being

dropped than the baseline of no feedback packets generated at all. The irreg-

ularity of the rate threshold technique’s effectiveness is also caused by high

packet loss rates. These techniques demonstrate the power of misused feed-

back packets to direct traffic away from less loaded sensors and onto heavily

loaded sensors.

3.6 Summary

The questions posed at the beginning of this chapter to outline the critical

areas of design in SPANIDS can now be answered easily. The questions were:

how should traffic be divided up, if there is a problem what traffic is causing

the problem, how should the problem be resolved, and how does a sensor

know if there is a problem?

The traffic is divided using an XOR-based hash function of the TCP/IP and

UDP/IP headers that define TCP and UDP traffic flows. The hash value pro-

duced is used as the index into a lookup table that maps the hash values to

sensor addresses. Several different hash functions can be used as sequential

backup hashes to separate hash collisions when large traffic flows hash to the

same value. The SPANIDS prototype uses four hash functions with an equal
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number of associated lookup tables.

If there is a problem, the traffic that is causing the problem can be identi-

fied by using packet counts. Within the context of the set of hash buckets asso-

ciated with the sensor that generated a feedback packet, packet counts easily

identify frequently used hash values. There is a tradeoff between the number

of hash buckets that are considered part of the problem and the amount of

dropped packets and connections broken. Essentially, when more hash buck-

ets are considered part of the problem, the response to a feedback is larger and

more traffic is directed away from the overloaded sensor, reducing packet loss.

However, when more hash buckets are affected there is a greater likelihood

that the effort to avoid overload is too large, breaking connections unneces-

sarily. This tradeoff is well behaved, and can be tailored to the capabilities and

requirements of the NIDS software deployed on the sensors.

Once the problem-causing hash buckets have been identified by the load

balancer, they can be either assigned to a different sensor or distributed using

a different hash function. Whether to change hash functions or reassign the

hash buckets depends on whether the hash buckets can overload any sensor

they are assigned to. The most effective method of estimating this is to rely

on the bucket’s history of assignment; if the hash bucket has been assigned to

sensors that have generated feedback it is more likely to be the cause of the

overload. However, choosing randomly is surprisingly effective as well. If a

hash bucket must be reassigned, a new sensor must be chosen. Assigning the

bucket to the sensor with the smallest value of a weighted packet record is the

most effective solution, though a random choice is extremely effective as well.

Finally, a sensor can monitor its packet buffer to determine whether it is
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becoming overloaded. Of the several techniques examined, the most effective

technique is to use the current rate the sensor’s packet buffer is filling to pre-

dict a tenth of a second into the future whether the sensor will be overloaded.

Mispredictions can cause unnecessary connection breaks, but the large num-

ber of packets not dropped is worth the broken connections.

It is interesting to note that for most of the simulation results, the two dif-

ferent trace files that are used produced very similar data despite an order

of magnitude difference in speed and despite covering different very differ-

ent lengths of time. This general similarity is encouraging, as it indicates that

the techniques employed here do not generally rely on the speed of the traf-

fic being monitored. Where the results do differ, the cause is most likely the

difference in speed. The difference is most obvious in the few techniques that

rely on specific timing.
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CHAPTER 4

RELATED WORK

4.1 General Load Balancing

The distribution of network traffic over clusters of nodes is commonly used

in network services such as web servers [7, 10]. Such load balancers often

maintain per-flow state to ensure that connections are not disrupted, or use a

static hashing approach.

An example of the static hashing approach is the ONE-IP project [7], which

suggests that each server in a cluster of servers providing a scalable service

should take responsibility for a range of hash values from a hash based on

IP source addresses. Network traffic is broadcast to all nodes in the cluster.

Each node’s network driver ignores traffic from IP addresses that do not hash

to within that node’s assigned range. This approach assumes that the request-

ing hosts hash relatively evenly and that such static assignment is sufficient to

handle network load variations. However, the technique is only meant to pro-

vide a theoretically higher capacity, not adapt to changes in load. Similarly,

the ONE-IP broadcast technique does not address problems that may result

from interrupt and system-call overhead.

An example of the per-flow state approach is the TranSend system de-

scribed by Fox et al [10]. In this system, each incoming connection is han-

87



dled by a thread in the TranSend front-end server. This server then behaves

similarly to a proxy server. It chooses a back-end node to handle the request,

makes the request, and returns the response to the original requester. The

TranSend approach assumes that the overhead of servicing a request is far

greater than the network communication overhead. This approach is accept-

able in the TranSend system and similar systems since it is possible to re-

ject new connection requests. A NIDS, on the other hand, is not part of the

network conversation and has no means to throttle network traffic or reject

new connection requests. Therefore a NIDS must be able to handle the max-

imum load that can be sent via the monitored network link. Additionally, a

TranSend-like system is easily overloaded. Fox suggests running a TranSend

front-end with a mere 400 threads, allowing only 400 simultaneous connec-

tions, which is several orders of magnitude too small to be resistant to a denial

of service attack.

4.2 Parallel NIDS

Previous work in parallel network intrusion detection has also employed

flow-based distribution strategies [9, 18]. Similar to conventional routers, these

systems maintain tables of established connections to route packets to the ap-

propriate sensor nodes.

The Kruegel approach uses either a statically assigned mechanism for de-

termining where to send traffic, or a statically assigned mechanism for deter-

mining when to redirect flows — both of which require full connection track-

ing. Neither method alters its routing based on the real load of any of the

sensors [18].
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The TopLayer system attempts to avoid the re-assignment problem alto-

gether [9]. The TopLayer system has a stateful flow tracking mechanism in its

load balancer, and flows are assigned to the sensors in a round-robin fashion.

Because it is possible for packets to be lost even when using flow-based dis-

tribution, TopLayer duplicates flows, ensuring that each flow is sent to at least

two different sensors. The hope is that at least one of the sensors will suc-

cessfully receive all of the packets in the flow. This approach supports flow-

based intrusion analysis at the sensors, and even protects sensors from simple

alert-based overloading [11] but makes the overall system vulnerable to SYN-

based denial-of-service attacks. The SPANIDS architecture does not exhibit

this scalability limitation. Additionally, neither the TopLayer approach, the

Kruegel approach, nor other existing systems use dynamic feedback to im-

prove system robustness and adaptability.

4.3 NIDS Technology

Network intrusion detection is an active field of research, constantly devel-

oping new approaches and techniques. The SPANIDS project leverages these

improvements by using off-the-shelf sensor hardware and software. The scal-

able load balancing approach provides a significant capacity improvement,

independent of and orthogonal to any improvements in the NIDS sensor soft-

ware or hardware. While the prototype system uses Snort [13, 31], it is not the

only approach that can be used with the SPANIDS platform. The SPANIDS

architecture is designed to be NIDS-agnostic, capable of working well with

any detection technology. Snort performs signature-based analysis of net-

work traffic and only known malicious traffic can be detected — a popular

89



technique [6, 22, 26]. The alternatives include stateful flow analysis [28] and

statistical anomaly detection [24, 33]. Stateful flow analysis carefully defines

the state transitions and logical flow of valid network communication. Varia-

tions are considered malicious. Statistical anomaly detection [24, 33] makes

the assumption that attackers behave differently from ordinary network users

and therefore any statistically unusual behavior must be malicious.

The SPANIDS system assumes the classical NIDS approach of network-

invisibility and noninterference. Some projects, like Hogwash [19] and Shield [34],

take a more intrusive approach of blocking traffic that is recognized as mali-

cious. Because packets that travel through SPANIDS are not altered signifi-

cantly by the load balancer, it would be possible to adapt SPANIDS to work

with such intrusive systems.

4.4 NIDS Performance Analysis

Network intrusion detection performance has been measured extensively,

both in terms of capabilities [12, 21, 29] and capacity [20, 30, 32].

Puketza lays out three objectives for a quality IDS: broad detection range,

economy in resource usage, and resilience to stress [29]. These objectives are

then estimated by running sets of many different automated attack scripts

against target hosts to determine how well the intrusion attempts are detected.

Puketza uses network traffic as one of the stressful situations an intrusion de-

tection system can be exposed to that decreases its effectiveness. In 1999, a

large network intrusion detection test was run at Lincoln Laboratories to de-

termine the qualitative success of the available analysis methods [12, 21]. The

effort coordinated efforts between a wide variety of research groups and con-
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tributed a great deal to standardizing metrics of NIDS success. The test re-

vealed many problems with NIDS detection techniques, including difficulty

with detecting new forms of attack, difficulty with detecting complex attacks,

and high false positive rates.

The work presented here is motivated by the realization that increasing

network speeds make intrusion detection systems vulnerable to overload sce-

narios that are not related to the specific analysis techniques used. Schaelicke

demonstrated that commodity hardware is incapable of sufficiently handling

even the top network speeds of ten years ago [32]. More critically, in Schaelicke’s

tests newer processors such as the Pentium IV were less capable of handling

the network load than older processors like the Pentium III. This lack of im-

provement indicates that the inability to handle the network load is unlikely

to be solved by newer and faster processor technology. Were the problem di-

rectly related to the complexity or efficiency of the packet analysis algorithms,

the faster Pentium IV should have offered large improvements over the Pen-

tium III. The SPANIDS project presented here directly addresses the capac-

ity bottleneck, while also developing and refining methods to evaluate NIDS

performance in terms of capacity. Though the nature of the quantitative (ca-

pacity) and qualitative metrics and design space appear orthogonal, improve-

ments in capacity allow more resources to be devoted to complex algorithms

that improve the qualitative success of intrusion detection systems.
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CHAPTER 5

CONCLUSIONS & FUTURE WORK

5.1 Future Work

There are many avenues left to explore in the realm of NIDS load balanc-

ing. Future work includes the design and investigation of techniques to make

the load balancing heuristics less deterministic and predictable, reducing the

vulnerability of the NIDS platform to sophisticated evasion techniques, as

well as better fallback techniques. Other avenues for future work include the

development of techniques to transfer flow information maintained by indi-

vidual NIDS sensors in the event that the load balancer moves a flow to an-

other sensor. Furthermore, the correlation of observed events will become

more important and parallel NIDS architectures must include light-weight

communication mechanisms to facilitate the exchange of such information.

5.1.1 Randomization

5.1.1.1 The Benefits of Random

Predictability is generally undesirable in a secure system like a NIDS load

balancer. If the load balancer can be affected in a predictable way, it is possi-

ble for a sophisticated attacker to carefully plan network events that will cause

the load balancer to overload a sensor. Probabilistic behavior reduces the
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causal link between network events and specific responses. For example, it

is much harder for an attacker to cause the load balancer to focus traffic on

a given sensor when the assignment of traffic to sensors is unpredictable and

unrelated to any input the attacker may provide.

5.1.1.2 New Applications of Random

There are several ways that additional randomness may be introduced to

the system to reduce overall predictability without loss of effectiveness. For

instance, the load balancer may randomly choose one of several hash func-

tions when promoting hash buckets to the next level. This would make it very

difficult for an attacker to predict the precise result of a promotion.

Another example of an area that can be modified to be more probabilis-

tic and less predictable is problem size estimation, described in Section 3.3.3.

In that section, the effect of treating overload problems as the result of one

of several preset problem sizes is detailed. It may be useful to choose a ran-

dom number of hash buckets to move or promote instead of using a preset

problem size. Using random problem sizes may provide a better tradeoff be-

tween dropped packets and broken connections than a static problem size

assumption. Additionally, even a very knowledgeable attacker cannot know

or affect how many hash buckets will be used to resolve sensor overload when

the number is chosen randomly.

5.1.1.3 Alternative Probabilities

Several of the techniques detailed in Chapter 3 already use random num-

bers to make decisions. In each case, the probability that any one alternative
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will be chosen is the same as any other alternative. The probabilities used for

each decision alternative do not need to be equal. For example, when ran-

domly deciding whether to move or promote a hash bucket it might be ben-

eficial to choose to move rather than promote 60% of the time, or 40% of the

time. Other random methods detailed in Chapter 3 may benefit from similar

alteration.

5.1.2 Problem Size

One area of the design space that could be explored further is the method

to estimate the size of the problem that is causing sensor overload. Currently,

a static number of hash buckets are used to avert sensor overload when a feed-

back packet is received. It is likely useful to dynamically estimate the problem

size. Such an estimate could be based on many of the same techniques that

have been used to determine whether to move or promote problem-causing

hash buckets. Such techniques would most likely be much more resource in-

tensive than the current static method, but the improvement in packet loss

and broken connection levels may be worth the additional resources.

5.1.3 Round Robin

The round robin packet distribution technique is the method most taken

the for granted in this thesis. The round robin technique as implemented in

the simulator is a rotating route path that iterates to the next sensor every time

it is used to route a packet. This is a simplistic implementation of a round-

robin distribution scheme. The method is used as the last resort when a flow

overloads a sensor and cannot be split apart by the available hash functions.
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However, this use of the round-robin technique is not fully justified. While

the technique does evenly distribute packets, it does not account for sensor

heterogeneity, packet heterogeneity, or known sensor load. Thus, its inter-

action with other techniques for load balancing is neither well-defined nor

well-explored. Alternative fallback mechanisms should be developed.

5.2 Conclusions

Network intrusion detection is one of several important security measures

commonly employed to secure critical data. As such it is an area of active re-

search and the state of the art changes rapidly. Increasing network speeds are

making the capacity of the NIDS platform a bottleneck that can compromise

the effectiveness of the entire NIDS. Parallel NIDS platforms are a viable solu-

tion to address this problem.

This thesis discusses the unique requirements of a parallel network intru-

sion detection platform, describes a cost-effective yet scalable solution, and

evaluates its performance using simulation. A custom NIDS load balancer

distributes the processing load over an array of sensor nodes to minimize

packet loss. It employs a scalable multi-level hashing technique to minimize

NIDS vulnerabilities and to adjust to changing network traffic characteris-

tics. The main contribution of this approach is the design of a load balancing

technique that does not maintain per-connection state while still supporting

stateful flow-based intrusion detection. Furthermore, the SPANIDS load bal-

ancer incorporates dynamic feedback from sensor nodes to adapt to changes

in network traffic and processing load, further minimizing packet loss.

There is a price to be paid for the scalability benefits of using hash func-
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tions to track network flows rather than a more stateful technique. When us-

ing only a hash to identify and route flows, the load balancer cannot know if a

given adjustment to the routing table will break any flows over multiple sensor

nodes. There is a high probability that such an adjustment will break flows,

but no easy way to know how many. Therefore, there is an inherent trade-

off between connection breaks caused by adaptive routing adjustments and

packet loss that could have been avoided with adaptive routing adjustments.

The exact tradeoff depends on the characteristics of the network traffic being

routed and the effectiveness of the adaptive adjustments in avoiding packet

loss, but in general more adaptive adjustments mean more connections bro-

ken and fewer packets lost. The importance of connection breaks depends on

the packet evaluation techniques used in the sensors and on the nature of the

attacks that need to be detected. For example, a stateless NIDS sensor does

not benefit from receiving a full flow. Additionally, in an overload attack, the

contents of the connections are typically irrelevant to the attack, though such

an attack may be used to mask a more detailed attack that would require anal-

ysis of the full flow. Thus, an exact optimal tradeoff cannot be determined in

the general case.

Evaluation results demonstrate the performance potential of this approach.

Since each adjustment potentially disrupts network flows, the best load bal-

ancing heuristic depends not only on the packet loss rates but also on the

number of network flows must be broken to achieve this performance. An

equally important consideration is the implementation complexity of differ-

ent heuristics. Under these considerations, a heuristic that estimates the pro-

cessing load that hash buckets exert on the sensor nodes outperforms all other
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schemes. Additional parameters for this approach also have a noticeable im-

pact on overall performance, allowing the fine-tuning of packet loss or broken

connections to meet the needs of particular environments.

The popularity of the Internet has driven networks to increase dramati-

cally in speed and size to satisfy the demands of the growing population. At

the same time, the size and diversity of the Internet creates an irresistible

plethora of motives and opportunities for malicious users to disrupt or oth-

erwise abuse the resources connected to the Internet. For this reason, faster,

cheaper, and better methods of protecting network users and network re-

sources from remote mistreatment will always be in demand.
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